\left\{ \begin{array} { l } { 2.5 x + 12.5 y = 9750 } \\ { 13 x - 13 y = 9750 } \end{array} \right.
Solve for x, y
x=1275
y=525
Graph
Share
Copied to clipboard
2.5x+12.5y=9750,13x-13y=9750
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2.5x+12.5y=9750
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2.5x=-12.5y+9750
Subtract \frac{25y}{2} from both sides of the equation.
x=0.4\left(-12.5y+9750\right)
Divide both sides of the equation by 2.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-5y+3900
Multiply 0.4 times -\frac{25y}{2}+9750.
13\left(-5y+3900\right)-13y=9750
Substitute -5y+3900 for x in the other equation, 13x-13y=9750.
-65y+50700-13y=9750
Multiply 13 times -5y+3900.
-78y+50700=9750
Add -65y to -13y.
-78y=-40950
Subtract 50700 from both sides of the equation.
y=525
Divide both sides by -78.
x=-5\times 525+3900
Substitute 525 for y in x=-5y+3900. Because the resulting equation contains only one variable, you can solve for x directly.
x=-2625+3900
Multiply -5 times 525.
x=1275
Add 3900 to -2625.
x=1275,y=525
The system is now solved.
2.5x+12.5y=9750,13x-13y=9750
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2.5&12.5\\13&-13\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9750\\9750\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2.5&12.5\\13&-13\end{matrix}\right))\left(\begin{matrix}2.5&12.5\\13&-13\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2.5&12.5\\13&-13\end{matrix}\right))\left(\begin{matrix}9750\\9750\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2.5&12.5\\13&-13\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2.5&12.5\\13&-13\end{matrix}\right))\left(\begin{matrix}9750\\9750\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2.5&12.5\\13&-13\end{matrix}\right))\left(\begin{matrix}9750\\9750\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{13}{2.5\left(-13\right)-12.5\times 13}&-\frac{12.5}{2.5\left(-13\right)-12.5\times 13}\\-\frac{13}{2.5\left(-13\right)-12.5\times 13}&\frac{2.5}{2.5\left(-13\right)-12.5\times 13}\end{matrix}\right)\left(\begin{matrix}9750\\9750\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}&\frac{5}{78}\\\frac{1}{15}&-\frac{1}{78}\end{matrix}\right)\left(\begin{matrix}9750\\9750\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}\times 9750+\frac{5}{78}\times 9750\\\frac{1}{15}\times 9750-\frac{1}{78}\times 9750\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1275\\525\end{matrix}\right)
Do the arithmetic.
x=1275,y=525
Extract the matrix elements x and y.
2.5x+12.5y=9750,13x-13y=9750
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
13\times 2.5x+13\times 12.5y=13\times 9750,2.5\times 13x+2.5\left(-13\right)y=2.5\times 9750
To make \frac{5x}{2} and 13x equal, multiply all terms on each side of the first equation by 13 and all terms on each side of the second by 2.5.
32.5x+162.5y=126750,32.5x-32.5y=24375
Simplify.
32.5x-32.5x+162.5y+32.5y=126750-24375
Subtract 32.5x-32.5y=24375 from 32.5x+162.5y=126750 by subtracting like terms on each side of the equal sign.
162.5y+32.5y=126750-24375
Add \frac{65x}{2} to -\frac{65x}{2}. Terms \frac{65x}{2} and -\frac{65x}{2} cancel out, leaving an equation with only one variable that can be solved.
195y=126750-24375
Add \frac{325y}{2} to \frac{65y}{2}.
195y=102375
Add 126750 to -24375.
y=525
Divide both sides by 195.
13x-13\times 525=9750
Substitute 525 for y in 13x-13y=9750. Because the resulting equation contains only one variable, you can solve for x directly.
13x-6825=9750
Multiply -13 times 525.
13x=16575
Add 6825 to both sides of the equation.
x=1275
Divide both sides by 13.
x=1275,y=525
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}