Skip to main content
Solve for y, z
Tick mark Image

Similar Problems from Web Search

Share

2y+7z=-6,10y-7z=26
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2y+7z=-6
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
2y=-7z-6
Subtract 7z from both sides of the equation.
y=\frac{1}{2}\left(-7z-6\right)
Divide both sides by 2.
y=-\frac{7}{2}z-3
Multiply \frac{1}{2} times -7z-6.
10\left(-\frac{7}{2}z-3\right)-7z=26
Substitute -\frac{7z}{2}-3 for y in the other equation, 10y-7z=26.
-35z-30-7z=26
Multiply 10 times -\frac{7z}{2}-3.
-42z-30=26
Add -35z to -7z.
-42z=56
Add 30 to both sides of the equation.
z=-\frac{4}{3}
Divide both sides by -42.
y=-\frac{7}{2}\left(-\frac{4}{3}\right)-3
Substitute -\frac{4}{3} for z in y=-\frac{7}{2}z-3. Because the resulting equation contains only one variable, you can solve for y directly.
y=\frac{14}{3}-3
Multiply -\frac{7}{2} times -\frac{4}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{5}{3}
Add -3 to \frac{14}{3}.
y=\frac{5}{3},z=-\frac{4}{3}
The system is now solved.
2y+7z=-6,10y-7z=26
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&7\\10&-7\end{matrix}\right)\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}-6\\26\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&7\\10&-7\end{matrix}\right))\left(\begin{matrix}2&7\\10&-7\end{matrix}\right)\left(\begin{matrix}y\\z\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\10&-7\end{matrix}\right))\left(\begin{matrix}-6\\26\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&7\\10&-7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\z\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\10&-7\end{matrix}\right))\left(\begin{matrix}-6\\26\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\z\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\10&-7\end{matrix}\right))\left(\begin{matrix}-6\\26\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{2\left(-7\right)-7\times 10}&-\frac{7}{2\left(-7\right)-7\times 10}\\-\frac{10}{2\left(-7\right)-7\times 10}&\frac{2}{2\left(-7\right)-7\times 10}\end{matrix}\right)\left(\begin{matrix}-6\\26\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}&\frac{1}{12}\\\frac{5}{42}&-\frac{1}{42}\end{matrix}\right)\left(\begin{matrix}-6\\26\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\left(-6\right)+\frac{1}{12}\times 26\\\frac{5}{42}\left(-6\right)-\frac{1}{42}\times 26\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}\\-\frac{4}{3}\end{matrix}\right)
Do the arithmetic.
y=\frac{5}{3},z=-\frac{4}{3}
Extract the matrix elements y and z.
2y+7z=-6,10y-7z=26
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10\times 2y+10\times 7z=10\left(-6\right),2\times 10y+2\left(-7\right)z=2\times 26
To make 2y and 10y equal, multiply all terms on each side of the first equation by 10 and all terms on each side of the second by 2.
20y+70z=-60,20y-14z=52
Simplify.
20y-20y+70z+14z=-60-52
Subtract 20y-14z=52 from 20y+70z=-60 by subtracting like terms on each side of the equal sign.
70z+14z=-60-52
Add 20y to -20y. Terms 20y and -20y cancel out, leaving an equation with only one variable that can be solved.
84z=-60-52
Add 70z to 14z.
84z=-112
Add -60 to -52.
z=-\frac{4}{3}
Divide both sides by 84.
10y-7\left(-\frac{4}{3}\right)=26
Substitute -\frac{4}{3} for z in 10y-7z=26. Because the resulting equation contains only one variable, you can solve for y directly.
10y+\frac{28}{3}=26
Multiply -7 times -\frac{4}{3}.
10y=\frac{50}{3}
Subtract \frac{28}{3} from both sides of the equation.
y=\frac{5}{3}
Divide both sides by 10.
y=\frac{5}{3},z=-\frac{4}{3}
The system is now solved.