Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

x_{3}=-2x_{1}+3x_{2}+10
Solve 2x_{1}-3x_{2}+x_{3}=10 for x_{3}.
x_{1}+4x_{2}-2\left(-2x_{1}+3x_{2}+10\right)=8 3x_{1}+2x_{2}-\left(-2x_{1}+3x_{2}+10\right)=1
Substitute -2x_{1}+3x_{2}+10 for x_{3} in the second and third equation.
x_{2}=\frac{5}{2}x_{1}-14 x_{1}=\frac{11}{5}+\frac{1}{5}x_{2}
Solve these equations for x_{2} and x_{1} respectively.
x_{1}=\frac{11}{5}+\frac{1}{5}\left(\frac{5}{2}x_{1}-14\right)
Substitute \frac{5}{2}x_{1}-14 for x_{2} in the equation x_{1}=\frac{11}{5}+\frac{1}{5}x_{2}.
x_{1}=-\frac{6}{5}
Solve x_{1}=\frac{11}{5}+\frac{1}{5}\left(\frac{5}{2}x_{1}-14\right) for x_{1}.
x_{2}=\frac{5}{2}\left(-\frac{6}{5}\right)-14
Substitute -\frac{6}{5} for x_{1} in the equation x_{2}=\frac{5}{2}x_{1}-14.
x_{2}=-17
Calculate x_{2} from x_{2}=\frac{5}{2}\left(-\frac{6}{5}\right)-14.
x_{3}=-2\left(-\frac{6}{5}\right)+3\left(-17\right)+10
Substitute -17 for x_{2} and -\frac{6}{5} for x_{1} in the equation x_{3}=-2x_{1}+3x_{2}+10.
x_{3}=-\frac{193}{5}
Calculate x_{3} from x_{3}=-2\left(-\frac{6}{5}\right)+3\left(-17\right)+10.
x_{1}=-\frac{6}{5} x_{2}=-17 x_{3}=-\frac{193}{5}
The system is now solved.