\left\{ \begin{array} { l } { 2 x - y = 6 } \\ { 2 x ^ { 2 } + y ^ { 2 } = 66 } \end{array} \right.
Solve for x, y
x=5\text{, }y=4
x=-1\text{, }y=-8
Graph
Share
Copied to clipboard
2x-y=6,y^{2}+2x^{2}=66
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x-y=6
Solve 2x-y=6 for x by isolating x on the left hand side of the equal sign.
2x=y+6
Subtract -y from both sides of the equation.
x=\frac{1}{2}y+3
Divide both sides by 2.
y^{2}+2\left(\frac{1}{2}y+3\right)^{2}=66
Substitute \frac{1}{2}y+3 for x in the other equation, y^{2}+2x^{2}=66.
y^{2}+2\left(\frac{1}{4}y^{2}+3y+9\right)=66
Square \frac{1}{2}y+3.
y^{2}+\frac{1}{2}y^{2}+6y+18=66
Multiply 2 times \frac{1}{4}y^{2}+3y+9.
\frac{3}{2}y^{2}+6y+18=66
Add y^{2} to \frac{1}{2}y^{2}.
\frac{3}{2}y^{2}+6y-48=0
Subtract 66 from both sides of the equation.
y=\frac{-6±\sqrt{6^{2}-4\times \frac{3}{2}\left(-48\right)}}{2\times \frac{3}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+2\times \left(\frac{1}{2}\right)^{2} for a, 2\times 3\times \frac{1}{2}\times 2 for b, and -48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-6±\sqrt{36-4\times \frac{3}{2}\left(-48\right)}}{2\times \frac{3}{2}}
Square 2\times 3\times \frac{1}{2}\times 2.
y=\frac{-6±\sqrt{36-6\left(-48\right)}}{2\times \frac{3}{2}}
Multiply -4 times 1+2\times \left(\frac{1}{2}\right)^{2}.
y=\frac{-6±\sqrt{36+288}}{2\times \frac{3}{2}}
Multiply -6 times -48.
y=\frac{-6±\sqrt{324}}{2\times \frac{3}{2}}
Add 36 to 288.
y=\frac{-6±18}{2\times \frac{3}{2}}
Take the square root of 324.
y=\frac{-6±18}{3}
Multiply 2 times 1+2\times \left(\frac{1}{2}\right)^{2}.
y=\frac{12}{3}
Now solve the equation y=\frac{-6±18}{3} when ± is plus. Add -6 to 18.
y=4
Divide 12 by 3.
y=-\frac{24}{3}
Now solve the equation y=\frac{-6±18}{3} when ± is minus. Subtract 18 from -6.
y=-8
Divide -24 by 3.
x=\frac{1}{2}\times 4+3
There are two solutions for y: 4 and -8. Substitute 4 for y in the equation x=\frac{1}{2}y+3 to find the corresponding solution for x that satisfies both equations.
x=2+3
Multiply \frac{1}{2} times 4.
x=5
Add \frac{1}{2}\times 4 to 3.
x=\frac{1}{2}\left(-8\right)+3
Now substitute -8 for y in the equation x=\frac{1}{2}y+3 and solve to find the corresponding solution for x that satisfies both equations.
x=-4+3
Multiply \frac{1}{2} times -8.
x=-1
Add -8\times \frac{1}{2} to 3.
x=5,y=4\text{ or }x=-1,y=-8
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}