Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x-6y=34,8x-3y=-11
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x-6y=34
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=6y+34
Add 6y to both sides of the equation.
x=\frac{1}{2}\left(6y+34\right)
Divide both sides by 2.
x=3y+17
Multiply \frac{1}{2} times 6y+34.
8\left(3y+17\right)-3y=-11
Substitute 3y+17 for x in the other equation, 8x-3y=-11.
24y+136-3y=-11
Multiply 8 times 3y+17.
21y+136=-11
Add 24y to -3y.
21y=-147
Subtract 136 from both sides of the equation.
y=-7
Divide both sides by 21.
x=3\left(-7\right)+17
Substitute -7 for y in x=3y+17. Because the resulting equation contains only one variable, you can solve for x directly.
x=-21+17
Multiply 3 times -7.
x=-4
Add 17 to -21.
x=-4,y=-7
The system is now solved.
2x-6y=34,8x-3y=-11
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&-6\\8&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}34\\-11\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&-6\\8&-3\end{matrix}\right))\left(\begin{matrix}2&-6\\8&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-6\\8&-3\end{matrix}\right))\left(\begin{matrix}34\\-11\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&-6\\8&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-6\\8&-3\end{matrix}\right))\left(\begin{matrix}34\\-11\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-6\\8&-3\end{matrix}\right))\left(\begin{matrix}34\\-11\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-\left(-6\times 8\right)}&-\frac{-6}{2\left(-3\right)-\left(-6\times 8\right)}\\-\frac{8}{2\left(-3\right)-\left(-6\times 8\right)}&\frac{2}{2\left(-3\right)-\left(-6\times 8\right)}\end{matrix}\right)\left(\begin{matrix}34\\-11\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{14}&\frac{1}{7}\\-\frac{4}{21}&\frac{1}{21}\end{matrix}\right)\left(\begin{matrix}34\\-11\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{14}\times 34+\frac{1}{7}\left(-11\right)\\-\frac{4}{21}\times 34+\frac{1}{21}\left(-11\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-7\end{matrix}\right)
Do the arithmetic.
x=-4,y=-7
Extract the matrix elements x and y.
2x-6y=34,8x-3y=-11
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
8\times 2x+8\left(-6\right)y=8\times 34,2\times 8x+2\left(-3\right)y=2\left(-11\right)
To make 2x and 8x equal, multiply all terms on each side of the first equation by 8 and all terms on each side of the second by 2.
16x-48y=272,16x-6y=-22
Simplify.
16x-16x-48y+6y=272+22
Subtract 16x-6y=-22 from 16x-48y=272 by subtracting like terms on each side of the equal sign.
-48y+6y=272+22
Add 16x to -16x. Terms 16x and -16x cancel out, leaving an equation with only one variable that can be solved.
-42y=272+22
Add -48y to 6y.
-42y=294
Add 272 to 22.
y=-7
Divide both sides by -42.
8x-3\left(-7\right)=-11
Substitute -7 for y in 8x-3y=-11. Because the resulting equation contains only one variable, you can solve for x directly.
8x+21=-11
Multiply -3 times -7.
8x=-32
Subtract 21 from both sides of the equation.
x=-4
Divide both sides by 8.
x=-4,y=-7
The system is now solved.