\left\{ \begin{array} { l } { 2 x - 5 y = 1 } \\ { x - 3 y = 1 x - 2 } \end{array} \right.
Solve for x, y
x = \frac{13}{6} = 2\frac{1}{6} \approx 2.166666667
y=\frac{2}{3}\approx 0.666666667
Graph
Share
Copied to clipboard
x-3y-x=-2
Consider the second equation. Subtract 1x from both sides.
-3y=-2
Combine x and -x to get 0.
y=\frac{-2}{-3}
Divide both sides by -3.
y=\frac{2}{3}
Fraction \frac{-2}{-3} can be simplified to \frac{2}{3} by removing the negative sign from both the numerator and the denominator.
2x-5\times \frac{2}{3}=1
Consider the first equation. Insert the known values of variables into the equation.
2x-\frac{10}{3}=1
Multiply -5 and \frac{2}{3} to get -\frac{10}{3}.
2x=1+\frac{10}{3}
Add \frac{10}{3} to both sides.
2x=\frac{13}{3}
Add 1 and \frac{10}{3} to get \frac{13}{3}.
x=\frac{\frac{13}{3}}{2}
Divide both sides by 2.
x=\frac{13}{3\times 2}
Express \frac{\frac{13}{3}}{2} as a single fraction.
x=\frac{13}{6}
Multiply 3 and 2 to get 6.
x=\frac{13}{6} y=\frac{2}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}