\left\{ \begin{array} { l } { 2 x - 3 y = 13 } \\ { 4 x + 4 = 5 } \end{array} \right.
Solve for x, y
x=\frac{1}{4}=0.25
y = -\frac{25}{6} = -4\frac{1}{6} \approx -4.166666667
Graph
Share
Copied to clipboard
4x=5-4
Consider the second equation. Subtract 4 from both sides.
4x=1
Subtract 4 from 5 to get 1.
x=\frac{1}{4}
Divide both sides by 4.
2\times \frac{1}{4}-3y=13
Consider the first equation. Insert the known values of variables into the equation.
\frac{1}{2}-3y=13
Multiply 2 and \frac{1}{4} to get \frac{1}{2}.
-3y=13-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
-3y=\frac{25}{2}
Subtract \frac{1}{2} from 13 to get \frac{25}{2}.
y=\frac{\frac{25}{2}}{-3}
Divide both sides by -3.
y=\frac{25}{2\left(-3\right)}
Express \frac{\frac{25}{2}}{-3} as a single fraction.
y=\frac{25}{-6}
Multiply 2 and -3 to get -6.
y=-\frac{25}{6}
Fraction \frac{25}{-6} can be rewritten as -\frac{25}{6} by extracting the negative sign.
x=\frac{1}{4} y=-\frac{25}{6}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}