\left\{ \begin{array} { l } { 2 x - 20 = y } \\ { 28 x + 244 = 2560 } \end{array} \right.
Solve for x, y
x = \frac{579}{7} = 82\frac{5}{7} \approx 82.714285714
y = \frac{1018}{7} = 145\frac{3}{7} \approx 145.428571429
Graph
Share
Copied to clipboard
28x=2560-244
Consider the second equation. Subtract 244 from both sides.
28x=2316
Subtract 244 from 2560 to get 2316.
x=\frac{2316}{28}
Divide both sides by 28.
x=\frac{579}{7}
Reduce the fraction \frac{2316}{28} to lowest terms by extracting and canceling out 4.
2\times \frac{579}{7}-20=y
Consider the first equation. Insert the known values of variables into the equation.
\frac{1158}{7}-20=y
Multiply 2 and \frac{579}{7} to get \frac{1158}{7}.
\frac{1018}{7}=y
Subtract 20 from \frac{1158}{7} to get \frac{1018}{7}.
y=\frac{1018}{7}
Swap sides so that all variable terms are on the left hand side.
x=\frac{579}{7} y=\frac{1018}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}