\left\{ \begin{array} { l } { 2 x - 12 y = 14 } \\ { - 4 x = - 16 y + 1 } \end{array} \right.
Solve for x, y
x = -\frac{59}{4} = -14\frac{3}{4} = -14.75
y = -\frac{29}{8} = -3\frac{5}{8} = -3.625
Graph
Share
Copied to clipboard
-4x+16y=1
Consider the second equation. Add 16y to both sides.
2x-12y=14,-4x+16y=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x-12y=14
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=12y+14
Add 12y to both sides of the equation.
x=\frac{1}{2}\left(12y+14\right)
Divide both sides by 2.
x=6y+7
Multiply \frac{1}{2} times 12y+14.
-4\left(6y+7\right)+16y=1
Substitute 6y+7 for x in the other equation, -4x+16y=1.
-24y-28+16y=1
Multiply -4 times 6y+7.
-8y-28=1
Add -24y to 16y.
-8y=29
Add 28 to both sides of the equation.
y=-\frac{29}{8}
Divide both sides by -8.
x=6\left(-\frac{29}{8}\right)+7
Substitute -\frac{29}{8} for y in x=6y+7. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{87}{4}+7
Multiply 6 times -\frac{29}{8}.
x=-\frac{59}{4}
Add 7 to -\frac{87}{4}.
x=-\frac{59}{4},y=-\frac{29}{8}
The system is now solved.
-4x+16y=1
Consider the second equation. Add 16y to both sides.
2x-12y=14,-4x+16y=1
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&-12\\-4&16\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\1\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&-12\\-4&16\end{matrix}\right))\left(\begin{matrix}2&-12\\-4&16\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-12\\-4&16\end{matrix}\right))\left(\begin{matrix}14\\1\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&-12\\-4&16\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-12\\-4&16\end{matrix}\right))\left(\begin{matrix}14\\1\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-12\\-4&16\end{matrix}\right))\left(\begin{matrix}14\\1\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{2\times 16-\left(-12\left(-4\right)\right)}&-\frac{-12}{2\times 16-\left(-12\left(-4\right)\right)}\\-\frac{-4}{2\times 16-\left(-12\left(-4\right)\right)}&\frac{2}{2\times 16-\left(-12\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}14\\1\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-\frac{3}{4}\\-\frac{1}{4}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}14\\1\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-14-\frac{3}{4}\\-\frac{1}{4}\times 14-\frac{1}{8}\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{59}{4}\\-\frac{29}{8}\end{matrix}\right)
Do the arithmetic.
x=-\frac{59}{4},y=-\frac{29}{8}
Extract the matrix elements x and y.
-4x+16y=1
Consider the second equation. Add 16y to both sides.
2x-12y=14,-4x+16y=1
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-4\times 2x-4\left(-12\right)y=-4\times 14,2\left(-4\right)x+2\times 16y=2
To make 2x and -4x equal, multiply all terms on each side of the first equation by -4 and all terms on each side of the second by 2.
-8x+48y=-56,-8x+32y=2
Simplify.
-8x+8x+48y-32y=-56-2
Subtract -8x+32y=2 from -8x+48y=-56 by subtracting like terms on each side of the equal sign.
48y-32y=-56-2
Add -8x to 8x. Terms -8x and 8x cancel out, leaving an equation with only one variable that can be solved.
16y=-56-2
Add 48y to -32y.
16y=-58
Add -56 to -2.
y=-\frac{29}{8}
Divide both sides by 16.
-4x+16\left(-\frac{29}{8}\right)=1
Substitute -\frac{29}{8} for y in -4x+16y=1. Because the resulting equation contains only one variable, you can solve for x directly.
-4x-58=1
Multiply 16 times -\frac{29}{8}.
-4x=59
Add 58 to both sides of the equation.
x=-\frac{59}{4}
Divide both sides by -4.
x=-\frac{59}{4},y=-\frac{29}{8}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}