\left\{ \begin{array} { l } { 2 x + y - 3 z = - 2 } \\ { 3 y - z = 3 } \\ { z = 2 } \end{array} \right.
Solve for x, y, z
x = \frac{7}{6} = 1\frac{1}{6} \approx 1.166666667
y = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
z=2
Share
Copied to clipboard
3y-2=3
Consider the second equation. Insert the known values of variables into the equation.
3y=3+2
Add 2 to both sides.
3y=5
Add 3 and 2 to get 5.
y=\frac{5}{3}
Divide both sides by 3.
2x+\frac{5}{3}-3\times 2=-2
Consider the first equation. Insert the known values of variables into the equation.
2x+\frac{5}{3}-6=-2
Multiply -3 and 2 to get -6.
2x-\frac{13}{3}=-2
Subtract 6 from \frac{5}{3} to get -\frac{13}{3}.
2x=-2+\frac{13}{3}
Add \frac{13}{3} to both sides.
2x=\frac{7}{3}
Add -2 and \frac{13}{3} to get \frac{7}{3}.
x=\frac{\frac{7}{3}}{2}
Divide both sides by 2.
x=\frac{7}{3\times 2}
Express \frac{\frac{7}{3}}{2} as a single fraction.
x=\frac{7}{6}
Multiply 3 and 2 to get 6.
x=\frac{7}{6} y=\frac{5}{3} z=2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}