\left\{ \begin{array} { l } { 2 x + y = 10 } \\ { x ^ { 2 } + y ^ { 2 } = 28 } \end{array} \right.
Solve for x, y
x=\frac{2\sqrt{10}}{5}+4\approx 5.264911064\text{, }y=-\frac{4\sqrt{10}}{5}+2\approx -0.529822128
x=-\frac{2\sqrt{10}}{5}+4\approx 2.735088936\text{, }y=\frac{4\sqrt{10}}{5}+2\approx 4.529822128
Graph
Share
Copied to clipboard
2x+y=10,y^{2}+x^{2}=28
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+y=10
Solve 2x+y=10 for x by isolating x on the left hand side of the equal sign.
2x=-y+10
Subtract y from both sides of the equation.
x=-\frac{1}{2}y+5
Divide both sides by 2.
y^{2}+\left(-\frac{1}{2}y+5\right)^{2}=28
Substitute -\frac{1}{2}y+5 for x in the other equation, y^{2}+x^{2}=28.
y^{2}+\frac{1}{4}y^{2}-5y+25=28
Square -\frac{1}{2}y+5.
\frac{5}{4}y^{2}-5y+25=28
Add y^{2} to \frac{1}{4}y^{2}.
\frac{5}{4}y^{2}-5y-3=0
Subtract 28 from both sides of the equation.
y=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times \frac{5}{4}\left(-3\right)}}{2\times \frac{5}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-\frac{1}{2}\right)^{2} for a, 1\times 5\left(-\frac{1}{2}\right)\times 2 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-5\right)±\sqrt{25-4\times \frac{5}{4}\left(-3\right)}}{2\times \frac{5}{4}}
Square 1\times 5\left(-\frac{1}{2}\right)\times 2.
y=\frac{-\left(-5\right)±\sqrt{25-5\left(-3\right)}}{2\times \frac{5}{4}}
Multiply -4 times 1+1\left(-\frac{1}{2}\right)^{2}.
y=\frac{-\left(-5\right)±\sqrt{25+15}}{2\times \frac{5}{4}}
Multiply -5 times -3.
y=\frac{-\left(-5\right)±\sqrt{40}}{2\times \frac{5}{4}}
Add 25 to 15.
y=\frac{-\left(-5\right)±2\sqrt{10}}{2\times \frac{5}{4}}
Take the square root of 40.
y=\frac{5±2\sqrt{10}}{2\times \frac{5}{4}}
The opposite of 1\times 5\left(-\frac{1}{2}\right)\times 2 is 5.
y=\frac{5±2\sqrt{10}}{\frac{5}{2}}
Multiply 2 times 1+1\left(-\frac{1}{2}\right)^{2}.
y=\frac{2\sqrt{10}+5}{\frac{5}{2}}
Now solve the equation y=\frac{5±2\sqrt{10}}{\frac{5}{2}} when ± is plus. Add 5 to 2\sqrt{10}.
y=\frac{4\sqrt{10}}{5}+2
Divide 5+2\sqrt{10} by \frac{5}{2} by multiplying 5+2\sqrt{10} by the reciprocal of \frac{5}{2}.
y=\frac{5-2\sqrt{10}}{\frac{5}{2}}
Now solve the equation y=\frac{5±2\sqrt{10}}{\frac{5}{2}} when ± is minus. Subtract 2\sqrt{10} from 5.
y=-\frac{4\sqrt{10}}{5}+2
Divide 5-2\sqrt{10} by \frac{5}{2} by multiplying 5-2\sqrt{10} by the reciprocal of \frac{5}{2}.
x=-\frac{1}{2}\left(\frac{4\sqrt{10}}{5}+2\right)+5
There are two solutions for y: 2+\frac{4\sqrt{10}}{5} and 2-\frac{4\sqrt{10}}{5}. Substitute 2+\frac{4\sqrt{10}}{5} for y in the equation x=-\frac{1}{2}y+5 to find the corresponding solution for x that satisfies both equations.
x=-\frac{\frac{4\sqrt{10}}{5}+2}{2}+5
Multiply -\frac{1}{2} times 2+\frac{4\sqrt{10}}{5}.
x=-\frac{1}{2}\left(-\frac{4\sqrt{10}}{5}+2\right)+5
Now substitute 2-\frac{4\sqrt{10}}{5} for y in the equation x=-\frac{1}{2}y+5 and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{-\frac{4\sqrt{10}}{5}+2}{2}+5
Multiply -\frac{1}{2} times 2-\frac{4\sqrt{10}}{5}.
x=-\frac{\frac{4\sqrt{10}}{5}+2}{2}+5,y=\frac{4\sqrt{10}}{5}+2\text{ or }x=-\frac{-\frac{4\sqrt{10}}{5}+2}{2}+5,y=-\frac{4\sqrt{10}}{5}+2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}