Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x+y=10,y^{2}+x^{2}=28
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+y=10
Solve 2x+y=10 for x by isolating x on the left hand side of the equal sign.
2x=-y+10
Subtract y from both sides of the equation.
x=-\frac{1}{2}y+5
Divide both sides by 2.
y^{2}+\left(-\frac{1}{2}y+5\right)^{2}=28
Substitute -\frac{1}{2}y+5 for x in the other equation, y^{2}+x^{2}=28.
y^{2}+\frac{1}{4}y^{2}-5y+25=28
Square -\frac{1}{2}y+5.
\frac{5}{4}y^{2}-5y+25=28
Add y^{2} to \frac{1}{4}y^{2}.
\frac{5}{4}y^{2}-5y-3=0
Subtract 28 from both sides of the equation.
y=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times \frac{5}{4}\left(-3\right)}}{2\times \frac{5}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-\frac{1}{2}\right)^{2} for a, 1\times 5\left(-\frac{1}{2}\right)\times 2 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-5\right)±\sqrt{25-4\times \frac{5}{4}\left(-3\right)}}{2\times \frac{5}{4}}
Square 1\times 5\left(-\frac{1}{2}\right)\times 2.
y=\frac{-\left(-5\right)±\sqrt{25-5\left(-3\right)}}{2\times \frac{5}{4}}
Multiply -4 times 1+1\left(-\frac{1}{2}\right)^{2}.
y=\frac{-\left(-5\right)±\sqrt{25+15}}{2\times \frac{5}{4}}
Multiply -5 times -3.
y=\frac{-\left(-5\right)±\sqrt{40}}{2\times \frac{5}{4}}
Add 25 to 15.
y=\frac{-\left(-5\right)±2\sqrt{10}}{2\times \frac{5}{4}}
Take the square root of 40.
y=\frac{5±2\sqrt{10}}{2\times \frac{5}{4}}
The opposite of 1\times 5\left(-\frac{1}{2}\right)\times 2 is 5.
y=\frac{5±2\sqrt{10}}{\frac{5}{2}}
Multiply 2 times 1+1\left(-\frac{1}{2}\right)^{2}.
y=\frac{2\sqrt{10}+5}{\frac{5}{2}}
Now solve the equation y=\frac{5±2\sqrt{10}}{\frac{5}{2}} when ± is plus. Add 5 to 2\sqrt{10}.
y=\frac{4\sqrt{10}}{5}+2
Divide 5+2\sqrt{10} by \frac{5}{2} by multiplying 5+2\sqrt{10} by the reciprocal of \frac{5}{2}.
y=\frac{5-2\sqrt{10}}{\frac{5}{2}}
Now solve the equation y=\frac{5±2\sqrt{10}}{\frac{5}{2}} when ± is minus. Subtract 2\sqrt{10} from 5.
y=-\frac{4\sqrt{10}}{5}+2
Divide 5-2\sqrt{10} by \frac{5}{2} by multiplying 5-2\sqrt{10} by the reciprocal of \frac{5}{2}.
x=-\frac{1}{2}\left(\frac{4\sqrt{10}}{5}+2\right)+5
There are two solutions for y: 2+\frac{4\sqrt{10}}{5} and 2-\frac{4\sqrt{10}}{5}. Substitute 2+\frac{4\sqrt{10}}{5} for y in the equation x=-\frac{1}{2}y+5 to find the corresponding solution for x that satisfies both equations.
x=-\frac{\frac{4\sqrt{10}}{5}+2}{2}+5
Multiply -\frac{1}{2} times 2+\frac{4\sqrt{10}}{5}.
x=-\frac{1}{2}\left(-\frac{4\sqrt{10}}{5}+2\right)+5
Now substitute 2-\frac{4\sqrt{10}}{5} for y in the equation x=-\frac{1}{2}y+5 and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{-\frac{4\sqrt{10}}{5}+2}{2}+5
Multiply -\frac{1}{2} times 2-\frac{4\sqrt{10}}{5}.
x=-\frac{\frac{4\sqrt{10}}{5}+2}{2}+5,y=\frac{4\sqrt{10}}{5}+2\text{ or }x=-\frac{-\frac{4\sqrt{10}}{5}+2}{2}+5,y=-\frac{4\sqrt{10}}{5}+2
The system is now solved.