Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x+y=1,y^{2}+x^{2}=13
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+y=1
Solve 2x+y=1 for x by isolating x on the left hand side of the equal sign.
2x=-y+1
Subtract y from both sides of the equation.
x=-\frac{1}{2}y+\frac{1}{2}
Divide both sides by 2.
y^{2}+\left(-\frac{1}{2}y+\frac{1}{2}\right)^{2}=13
Substitute -\frac{1}{2}y+\frac{1}{2} for x in the other equation, y^{2}+x^{2}=13.
y^{2}+\frac{1}{4}y^{2}-\frac{1}{2}y+\frac{1}{4}=13
Square -\frac{1}{2}y+\frac{1}{2}.
\frac{5}{4}y^{2}-\frac{1}{2}y+\frac{1}{4}=13
Add y^{2} to \frac{1}{4}y^{2}.
\frac{5}{4}y^{2}-\frac{1}{2}y-\frac{51}{4}=0
Subtract 13 from both sides of the equation.
y=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\left(-\frac{1}{2}\right)^{2}-4\times \frac{5}{4}\left(-\frac{51}{4}\right)}}{2\times \frac{5}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-\frac{1}{2}\right)^{2} for a, 1\times \frac{1}{2}\left(-\frac{1}{2}\right)\times 2 for b, and -\frac{51}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-4\times \frac{5}{4}\left(-\frac{51}{4}\right)}}{2\times \frac{5}{4}}
Square 1\times \frac{1}{2}\left(-\frac{1}{2}\right)\times 2.
y=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-5\left(-\frac{51}{4}\right)}}{2\times \frac{5}{4}}
Multiply -4 times 1+1\left(-\frac{1}{2}\right)^{2}.
y=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1+255}{4}}}{2\times \frac{5}{4}}
Multiply -5 times -\frac{51}{4}.
y=\frac{-\left(-\frac{1}{2}\right)±\sqrt{64}}{2\times \frac{5}{4}}
Add \frac{1}{4} to \frac{255}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{1}{2}\right)±8}{2\times \frac{5}{4}}
Take the square root of 64.
y=\frac{\frac{1}{2}±8}{2\times \frac{5}{4}}
The opposite of 1\times \frac{1}{2}\left(-\frac{1}{2}\right)\times 2 is \frac{1}{2}.
y=\frac{\frac{1}{2}±8}{\frac{5}{2}}
Multiply 2 times 1+1\left(-\frac{1}{2}\right)^{2}.
y=\frac{\frac{17}{2}}{\frac{5}{2}}
Now solve the equation y=\frac{\frac{1}{2}±8}{\frac{5}{2}} when ± is plus. Add \frac{1}{2} to 8.
y=\frac{17}{5}
Divide \frac{17}{2} by \frac{5}{2} by multiplying \frac{17}{2} by the reciprocal of \frac{5}{2}.
y=-\frac{\frac{15}{2}}{\frac{5}{2}}
Now solve the equation y=\frac{\frac{1}{2}±8}{\frac{5}{2}} when ± is minus. Subtract 8 from \frac{1}{2}.
y=-3
Divide -\frac{15}{2} by \frac{5}{2} by multiplying -\frac{15}{2} by the reciprocal of \frac{5}{2}.
x=-\frac{1}{2}\times \frac{17}{5}+\frac{1}{2}
There are two solutions for y: \frac{17}{5} and -3. Substitute \frac{17}{5} for y in the equation x=-\frac{1}{2}y+\frac{1}{2} to find the corresponding solution for x that satisfies both equations.
x=-\frac{17}{10}+\frac{1}{2}
Multiply -\frac{1}{2} times \frac{17}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=-\frac{6}{5}
Add -\frac{1}{2}\times \frac{17}{5} to \frac{1}{2}.
x=-\frac{1}{2}\left(-3\right)+\frac{1}{2}
Now substitute -3 for y in the equation x=-\frac{1}{2}y+\frac{1}{2} and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{3+1}{2}
Multiply -\frac{1}{2} times -3.
x=2
Add -3\left(-\frac{1}{2}\right) to \frac{1}{2}.
x=-\frac{6}{5},y=\frac{17}{5}\text{ or }x=2,y=-3
The system is now solved.