\left\{ \begin{array} { l } { 2 x + 5 y = 600 } \\ { 3 x + y = 380 } \end{array} \right.
Solve for x, y
x=100
y=80
Graph
Share
Copied to clipboard
2x+5y=600,3x+y=380
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+5y=600
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=-5y+600
Subtract 5y from both sides of the equation.
x=\frac{1}{2}\left(-5y+600\right)
Divide both sides by 2.
x=-\frac{5}{2}y+300
Multiply \frac{1}{2} times -5y+600.
3\left(-\frac{5}{2}y+300\right)+y=380
Substitute -\frac{5y}{2}+300 for x in the other equation, 3x+y=380.
-\frac{15}{2}y+900+y=380
Multiply 3 times -\frac{5y}{2}+300.
-\frac{13}{2}y+900=380
Add -\frac{15y}{2} to y.
-\frac{13}{2}y=-520
Subtract 900 from both sides of the equation.
y=80
Divide both sides of the equation by -\frac{13}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{5}{2}\times 80+300
Substitute 80 for y in x=-\frac{5}{2}y+300. Because the resulting equation contains only one variable, you can solve for x directly.
x=-200+300
Multiply -\frac{5}{2} times 80.
x=100
Add 300 to -200.
x=100,y=80
The system is now solved.
2x+5y=600,3x+y=380
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&5\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}600\\380\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&5\\3&1\end{matrix}\right))\left(\begin{matrix}2&5\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\3&1\end{matrix}\right))\left(\begin{matrix}600\\380\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&5\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\3&1\end{matrix}\right))\left(\begin{matrix}600\\380\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\3&1\end{matrix}\right))\left(\begin{matrix}600\\380\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-5\times 3}&-\frac{5}{2-5\times 3}\\-\frac{3}{2-5\times 3}&\frac{2}{2-5\times 3}\end{matrix}\right)\left(\begin{matrix}600\\380\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}&\frac{5}{13}\\\frac{3}{13}&-\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}600\\380\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}\times 600+\frac{5}{13}\times 380\\\frac{3}{13}\times 600-\frac{2}{13}\times 380\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\80\end{matrix}\right)
Do the arithmetic.
x=100,y=80
Extract the matrix elements x and y.
2x+5y=600,3x+y=380
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\times 2x+3\times 5y=3\times 600,2\times 3x+2y=2\times 380
To make 2x and 3x equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 2.
6x+15y=1800,6x+2y=760
Simplify.
6x-6x+15y-2y=1800-760
Subtract 6x+2y=760 from 6x+15y=1800 by subtracting like terms on each side of the equal sign.
15y-2y=1800-760
Add 6x to -6x. Terms 6x and -6x cancel out, leaving an equation with only one variable that can be solved.
13y=1800-760
Add 15y to -2y.
13y=1040
Add 1800 to -760.
y=80
Divide both sides by 13.
3x+80=380
Substitute 80 for y in 3x+y=380. Because the resulting equation contains only one variable, you can solve for x directly.
3x=300
Subtract 80 from both sides of the equation.
x=100
Divide both sides by 3.
x=100,y=80
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}