\left\{ \begin{array} { l } { 2 x + 5 = - 1 + 4 y } \\ { 2 x + 4 y = 2 x + 5 } \end{array} \right.
Solve for x, y
x=-\frac{1}{2}=-0.5
y = \frac{5}{4} = 1\frac{1}{4} = 1.25
Graph
Share
Copied to clipboard
2x+5-4y=-1
Consider the first equation. Subtract 4y from both sides.
2x-4y=-1-5
Subtract 5 from both sides.
2x-4y=-6
Subtract 5 from -1 to get -6.
2x+4y-2x=5
Consider the second equation. Subtract 2x from both sides.
4y=5
Combine 2x and -2x to get 0.
y=\frac{5}{4}
Divide both sides by 4.
2x-4\times \frac{5}{4}=-6
Consider the first equation. Insert the known values of variables into the equation.
2x-5=-6
Multiply -4 and \frac{5}{4} to get -5.
2x=-6+5
Add 5 to both sides.
2x=-1
Add -6 and 5 to get -1.
x=-\frac{1}{2}
Divide both sides by 2.
x=-\frac{1}{2} y=\frac{5}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}