\left\{ \begin{array} { l } { 2 x + 4 y - z + 4 = 13 } \\ { 3 y - 7 z + 6 u = 4 } \\ { 4 z - 4 = 9 } \\ { 21 u = 720 } \end{array} \right.
Solve for x, y, z, u
x = \frac{21073}{168} = 125\frac{73}{168} \approx 125.43452381
y = -\frac{5011}{84} = -59\frac{55}{84} \approx -59.654761905
z = \frac{13}{4} = 3\frac{1}{4} = 3.25
u = \frac{240}{7} = 34\frac{2}{7} \approx 34.285714286
Share
Copied to clipboard
4z=9+4
Consider the third equation. Add 4 to both sides.
4z=13
Add 9 and 4 to get 13.
z=\frac{13}{4}
Divide both sides by 4.
u=\frac{720}{21}
Consider the fourth equation. Divide both sides by 21.
u=\frac{240}{7}
Reduce the fraction \frac{720}{21} to lowest terms by extracting and canceling out 3.
3y-7\times \frac{13}{4}+6\times \frac{240}{7}=4
Consider the second equation. Insert the known values of variables into the equation.
3y-\frac{91}{4}+6\times \frac{240}{7}=4
Multiply -7 and \frac{13}{4} to get -\frac{91}{4}.
3y-\frac{91}{4}+\frac{1440}{7}=4
Multiply 6 and \frac{240}{7} to get \frac{1440}{7}.
3y+\frac{5123}{28}=4
Add -\frac{91}{4} and \frac{1440}{7} to get \frac{5123}{28}.
3y=4-\frac{5123}{28}
Subtract \frac{5123}{28} from both sides.
3y=-\frac{5011}{28}
Subtract \frac{5123}{28} from 4 to get -\frac{5011}{28}.
y=\frac{-\frac{5011}{28}}{3}
Divide both sides by 3.
y=\frac{-5011}{28\times 3}
Express \frac{-\frac{5011}{28}}{3} as a single fraction.
y=\frac{-5011}{84}
Multiply 28 and 3 to get 84.
y=-\frac{5011}{84}
Fraction \frac{-5011}{84} can be rewritten as -\frac{5011}{84} by extracting the negative sign.
2x+4\left(-\frac{5011}{84}\right)-\frac{13}{4}+4=13
Consider the first equation. Insert the known values of variables into the equation.
2x-\frac{5011}{21}-\frac{13}{4}+4=13
Multiply 4 and -\frac{5011}{84} to get -\frac{5011}{21}.
2x-\frac{20317}{84}+4=13
Subtract \frac{13}{4} from -\frac{5011}{21} to get -\frac{20317}{84}.
2x-\frac{19981}{84}=13
Add -\frac{20317}{84} and 4 to get -\frac{19981}{84}.
2x=13+\frac{19981}{84}
Add \frac{19981}{84} to both sides.
2x=\frac{21073}{84}
Add 13 and \frac{19981}{84} to get \frac{21073}{84}.
x=\frac{\frac{21073}{84}}{2}
Divide both sides by 2.
x=\frac{21073}{84\times 2}
Express \frac{\frac{21073}{84}}{2} as a single fraction.
x=\frac{21073}{168}
Multiply 84 and 2 to get 168.
x=\frac{21073}{168} y=-\frac{5011}{84} z=\frac{13}{4} u=\frac{240}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}