\left\{ \begin{array} { l } { 2 x + 3 y - 4 z = 12 } \\ { x + 3 y + z = 6 } \\ { - x - 2 y + 3 z = - 8 } \end{array} \right.
Solve for x, y, z
x=1
y=2
z=-1
Share
Copied to clipboard
x+3y+z=6 2x+3y-4z=12 -x-2y+3z=-8
Reorder the equations.
x=-3y-z+6
Solve x+3y+z=6 for x.
2\left(-3y-z+6\right)+3y-4z=12 -\left(-3y-z+6\right)-2y+3z=-8
Substitute -3y-z+6 for x in the second and third equation.
y=-2z z=-\frac{1}{4}y-\frac{1}{2}
Solve these equations for y and z respectively.
z=-\frac{1}{4}\left(-2\right)z-\frac{1}{2}
Substitute -2z for y in the equation z=-\frac{1}{4}y-\frac{1}{2}.
z=-1
Solve z=-\frac{1}{4}\left(-2\right)z-\frac{1}{2} for z.
y=-2\left(-1\right)
Substitute -1 for z in the equation y=-2z.
y=2
Calculate y from y=-2\left(-1\right).
x=-3\times 2-\left(-1\right)+6
Substitute 2 for y and -1 for z in the equation x=-3y-z+6.
x=1
Calculate x from x=-3\times 2-\left(-1\right)+6.
x=1 y=2 z=-1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}