\left\{ \begin{array} { l } { 2 x + 3 y - 2 = 0 \quad 0 } \\ { \frac { 2 x + 3 y + 5 } { 7 } - 2 y = 98 } \end{array} \right.
Solve for x, y
x = \frac{295}{4} = 73\frac{3}{4} = 73.75
y = -\frac{97}{2} = -48\frac{1}{2} = -48.5
Graph
Share
Copied to clipboard
2x+3y=2
Consider the first equation. Add 2 to both sides. Anything plus zero gives itself.
2x+3y+5-14y=686
Consider the second equation. Multiply both sides of the equation by 7.
2x-11y+5=686
Combine 3y and -14y to get -11y.
2x-11y=686-5
Subtract 5 from both sides.
2x-11y=681
Subtract 5 from 686 to get 681.
2x+3y=2,2x-11y=681
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+3y=2
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=-3y+2
Subtract 3y from both sides of the equation.
x=\frac{1}{2}\left(-3y+2\right)
Divide both sides by 2.
x=-\frac{3}{2}y+1
Multiply \frac{1}{2} times -3y+2.
2\left(-\frac{3}{2}y+1\right)-11y=681
Substitute -\frac{3y}{2}+1 for x in the other equation, 2x-11y=681.
-3y+2-11y=681
Multiply 2 times -\frac{3y}{2}+1.
-14y+2=681
Add -3y to -11y.
-14y=679
Subtract 2 from both sides of the equation.
y=-\frac{97}{2}
Divide both sides by -14.
x=-\frac{3}{2}\left(-\frac{97}{2}\right)+1
Substitute -\frac{97}{2} for y in x=-\frac{3}{2}y+1. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{291}{4}+1
Multiply -\frac{3}{2} times -\frac{97}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{295}{4}
Add 1 to \frac{291}{4}.
x=\frac{295}{4},y=-\frac{97}{2}
The system is now solved.
2x+3y=2
Consider the first equation. Add 2 to both sides. Anything plus zero gives itself.
2x+3y+5-14y=686
Consider the second equation. Multiply both sides of the equation by 7.
2x-11y+5=686
Combine 3y and -14y to get -11y.
2x-11y=686-5
Subtract 5 from both sides.
2x-11y=681
Subtract 5 from 686 to get 681.
2x+3y=2,2x-11y=681
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&3\\2&-11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\681\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&3\\2&-11\end{matrix}\right))\left(\begin{matrix}2&3\\2&-11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\2&-11\end{matrix}\right))\left(\begin{matrix}2\\681\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&3\\2&-11\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\2&-11\end{matrix}\right))\left(\begin{matrix}2\\681\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\2&-11\end{matrix}\right))\left(\begin{matrix}2\\681\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{2\left(-11\right)-3\times 2}&-\frac{3}{2\left(-11\right)-3\times 2}\\-\frac{2}{2\left(-11\right)-3\times 2}&\frac{2}{2\left(-11\right)-3\times 2}\end{matrix}\right)\left(\begin{matrix}2\\681\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{28}&\frac{3}{28}\\\frac{1}{14}&-\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}2\\681\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{28}\times 2+\frac{3}{28}\times 681\\\frac{1}{14}\times 2-\frac{1}{14}\times 681\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{295}{4}\\-\frac{97}{2}\end{matrix}\right)
Do the arithmetic.
x=\frac{295}{4},y=-\frac{97}{2}
Extract the matrix elements x and y.
2x+3y=2
Consider the first equation. Add 2 to both sides. Anything plus zero gives itself.
2x+3y+5-14y=686
Consider the second equation. Multiply both sides of the equation by 7.
2x-11y+5=686
Combine 3y and -14y to get -11y.
2x-11y=686-5
Subtract 5 from both sides.
2x-11y=681
Subtract 5 from 686 to get 681.
2x+3y=2,2x-11y=681
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2x-2x+3y+11y=2-681
Subtract 2x-11y=681 from 2x+3y=2 by subtracting like terms on each side of the equal sign.
3y+11y=2-681
Add 2x to -2x. Terms 2x and -2x cancel out, leaving an equation with only one variable that can be solved.
14y=2-681
Add 3y to 11y.
14y=-679
Add 2 to -681.
y=-\frac{97}{2}
Divide both sides by 14.
2x-11\left(-\frac{97}{2}\right)=681
Substitute -\frac{97}{2} for y in 2x-11y=681. Because the resulting equation contains only one variable, you can solve for x directly.
2x+\frac{1067}{2}=681
Multiply -11 times -\frac{97}{2}.
2x=\frac{295}{2}
Subtract \frac{1067}{2} from both sides of the equation.
x=\frac{295}{4}
Divide both sides by 2.
x=\frac{295}{4},y=-\frac{97}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}