\left\{ \begin{array} { l } { 2 x + 3 y = 90 } \\ { 3 x + 2 y = 160 } \end{array} \right.
Solve for x, y
x=60
y=-10
Graph
Share
Copied to clipboard
2x+3y=90,3x+2y=160
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+3y=90
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=-3y+90
Subtract 3y from both sides of the equation.
x=\frac{1}{2}\left(-3y+90\right)
Divide both sides by 2.
x=-\frac{3}{2}y+45
Multiply \frac{1}{2} times -3y+90.
3\left(-\frac{3}{2}y+45\right)+2y=160
Substitute -\frac{3y}{2}+45 for x in the other equation, 3x+2y=160.
-\frac{9}{2}y+135+2y=160
Multiply 3 times -\frac{3y}{2}+45.
-\frac{5}{2}y+135=160
Add -\frac{9y}{2} to 2y.
-\frac{5}{2}y=25
Subtract 135 from both sides of the equation.
y=-10
Divide both sides of the equation by -\frac{5}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{3}{2}\left(-10\right)+45
Substitute -10 for y in x=-\frac{3}{2}y+45. Because the resulting equation contains only one variable, you can solve for x directly.
x=15+45
Multiply -\frac{3}{2} times -10.
x=60
Add 45 to 15.
x=60,y=-10
The system is now solved.
2x+3y=90,3x+2y=160
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}90\\160\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}2&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}90\\160\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&3\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}90\\160\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&2\end{matrix}\right))\left(\begin{matrix}90\\160\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-3\times 3}&-\frac{3}{2\times 2-3\times 3}\\-\frac{3}{2\times 2-3\times 3}&\frac{2}{2\times 2-3\times 3}\end{matrix}\right)\left(\begin{matrix}90\\160\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}&\frac{3}{5}\\\frac{3}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}90\\160\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\times 90+\frac{3}{5}\times 160\\\frac{3}{5}\times 90-\frac{2}{5}\times 160\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}60\\-10\end{matrix}\right)
Do the arithmetic.
x=60,y=-10
Extract the matrix elements x and y.
2x+3y=90,3x+2y=160
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\times 2x+3\times 3y=3\times 90,2\times 3x+2\times 2y=2\times 160
To make 2x and 3x equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 2.
6x+9y=270,6x+4y=320
Simplify.
6x-6x+9y-4y=270-320
Subtract 6x+4y=320 from 6x+9y=270 by subtracting like terms on each side of the equal sign.
9y-4y=270-320
Add 6x to -6x. Terms 6x and -6x cancel out, leaving an equation with only one variable that can be solved.
5y=270-320
Add 9y to -4y.
5y=-50
Add 270 to -320.
y=-10
Divide both sides by 5.
3x+2\left(-10\right)=160
Substitute -10 for y in 3x+2y=160. Because the resulting equation contains only one variable, you can solve for x directly.
3x-20=160
Multiply 2 times -10.
3x=180
Add 20 to both sides of the equation.
x=60
Divide both sides by 3.
x=60,y=-10
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}