Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x+3y=430,x+2y=260
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+3y=430
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=-3y+430
Subtract 3y from both sides of the equation.
x=\frac{1}{2}\left(-3y+430\right)
Divide both sides by 2.
x=-\frac{3}{2}y+215
Multiply \frac{1}{2} times -3y+430.
-\frac{3}{2}y+215+2y=260
Substitute -\frac{3y}{2}+215 for x in the other equation, x+2y=260.
\frac{1}{2}y+215=260
Add -\frac{3y}{2} to 2y.
\frac{1}{2}y=45
Subtract 215 from both sides of the equation.
y=90
Multiply both sides by 2.
x=-\frac{3}{2}\times 90+215
Substitute 90 for y in x=-\frac{3}{2}y+215. Because the resulting equation contains only one variable, you can solve for x directly.
x=-135+215
Multiply -\frac{3}{2} times 90.
x=80
Add 215 to -135.
x=80,y=90
The system is now solved.
2x+3y=430,x+2y=260
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&3\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}430\\260\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&3\\1&2\end{matrix}\right))\left(\begin{matrix}2&3\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&2\end{matrix}\right))\left(\begin{matrix}430\\260\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&3\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&2\end{matrix}\right))\left(\begin{matrix}430\\260\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&2\end{matrix}\right))\left(\begin{matrix}430\\260\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-3}&-\frac{3}{2\times 2-3}\\-\frac{1}{2\times 2-3}&\frac{2}{2\times 2-3}\end{matrix}\right)\left(\begin{matrix}430\\260\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-3\\-1&2\end{matrix}\right)\left(\begin{matrix}430\\260\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 430-3\times 260\\-430+2\times 260\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}80\\90\end{matrix}\right)
Do the arithmetic.
x=80,y=90
Extract the matrix elements x and y.
2x+3y=430,x+2y=260
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2x+3y=430,2x+2\times 2y=2\times 260
To make 2x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 2.
2x+3y=430,2x+4y=520
Simplify.
2x-2x+3y-4y=430-520
Subtract 2x+4y=520 from 2x+3y=430 by subtracting like terms on each side of the equal sign.
3y-4y=430-520
Add 2x to -2x. Terms 2x and -2x cancel out, leaving an equation with only one variable that can be solved.
-y=430-520
Add 3y to -4y.
-y=-90
Add 430 to -520.
y=90
Divide both sides by -1.
x+2\times 90=260
Substitute 90 for y in x+2y=260. Because the resulting equation contains only one variable, you can solve for x directly.
x+180=260
Multiply 2 times 90.
x=80
Subtract 180 from both sides of the equation.
x=80,y=90
The system is now solved.