\left\{ \begin{array} { l } { 2 x + 3 y = 15.5 p } \\ { 5 x + 6 y = 350 } \end{array} \right.
Solve for x, y
x=350-31p
y=\frac{155p}{6}-\frac{700}{3}
Graph
Share
Copied to clipboard
2x+3y=\frac{31p}{2},5x+6y=350
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+3y=\frac{31p}{2}
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=-3y+\frac{31p}{2}
Subtract 3y from both sides of the equation.
x=\frac{1}{2}\left(-3y+\frac{31p}{2}\right)
Divide both sides by 2.
x=-\frac{3}{2}y+\frac{31p}{4}
Multiply \frac{1}{2} times -3y+\frac{31p}{2}.
5\left(-\frac{3}{2}y+\frac{31p}{4}\right)+6y=350
Substitute -\frac{3y}{2}+\frac{31p}{4} for x in the other equation, 5x+6y=350.
-\frac{15}{2}y+\frac{155p}{4}+6y=350
Multiply 5 times -\frac{3y}{2}+\frac{31p}{4}.
-\frac{3}{2}y+\frac{155p}{4}=350
Add -\frac{15y}{2} to 6y.
-\frac{3}{2}y=-\frac{155p}{4}+350
Subtract \frac{155p}{4} from both sides of the equation.
y=\frac{155p}{6}-\frac{700}{3}
Divide both sides of the equation by -\frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{3}{2}\left(\frac{155p}{6}-\frac{700}{3}\right)+\frac{31p}{4}
Substitute -\frac{700}{3}+\frac{155p}{6} for y in x=-\frac{3}{2}y+\frac{31p}{4}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{155p}{4}+350+\frac{31p}{4}
Multiply -\frac{3}{2} times -\frac{700}{3}+\frac{155p}{6}.
x=350-31p
Add \frac{31p}{4} to 350-\frac{155p}{4}.
x=350-31p,y=\frac{155p}{6}-\frac{700}{3}
The system is now solved.
2x+3y=\frac{31p}{2},5x+6y=350
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&3\\5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{31p}{2}\\350\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&3\\5&6\end{matrix}\right))\left(\begin{matrix}2&3\\5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&6\end{matrix}\right))\left(\begin{matrix}\frac{31p}{2}\\350\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&3\\5&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&6\end{matrix}\right))\left(\begin{matrix}\frac{31p}{2}\\350\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&6\end{matrix}\right))\left(\begin{matrix}\frac{31p}{2}\\350\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{2\times 6-3\times 5}&-\frac{3}{2\times 6-3\times 5}\\-\frac{5}{2\times 6-3\times 5}&\frac{2}{2\times 6-3\times 5}\end{matrix}\right)\left(\begin{matrix}\frac{31p}{2}\\350\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&1\\\frac{5}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}\frac{31p}{2}\\350\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\times \frac{31p}{2}+350\\\frac{5}{3}\times \frac{31p}{2}-\frac{2}{3}\times 350\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}350-31p\\\frac{155p}{6}-\frac{700}{3}\end{matrix}\right)
Do the arithmetic.
x=350-31p,y=\frac{155p}{6}-\frac{700}{3}
Extract the matrix elements x and y.
2x+3y=\frac{31p}{2},5x+6y=350
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5\times 2x+5\times 3y=5\times \frac{31p}{2},2\times 5x+2\times 6y=2\times 350
To make 2x and 5x equal, multiply all terms on each side of the first equation by 5 and all terms on each side of the second by 2.
10x+15y=\frac{155p}{2},10x+12y=700
Simplify.
10x-10x+15y-12y=\frac{155p}{2}-700
Subtract 10x+12y=700 from 10x+15y=\frac{155p}{2} by subtracting like terms on each side of the equal sign.
15y-12y=\frac{155p}{2}-700
Add 10x to -10x. Terms 10x and -10x cancel out, leaving an equation with only one variable that can be solved.
3y=\frac{155p}{2}-700
Add 15y to -12y.
y=\frac{155p}{6}-\frac{700}{3}
Divide both sides by 3.
5x+6\left(\frac{155p}{6}-\frac{700}{3}\right)=350
Substitute -\frac{700}{3}+\frac{155p}{6} for y in 5x+6y=350. Because the resulting equation contains only one variable, you can solve for x directly.
5x+155p-1400=350
Multiply 6 times -\frac{700}{3}+\frac{155p}{6}.
5x=1750-155p
Subtract -1400+155p from both sides of the equation.
x=350-31p
Divide both sides by 5.
x=350-31p,y=\frac{155p}{6}-\frac{700}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}