\left\{ \begin{array} { l } { 2 x + 1.6 y = 124 } \\ { 2.6 x + 2.1 = 36 } \end{array} \right.
Solve for x, y
x = \frac{339}{26} = 13\frac{1}{26} \approx 13.038461538
y = \frac{6365}{104} = 61\frac{21}{104} \approx 61.201923077
Graph
Share
Copied to clipboard
2.6x=36-2.1
Consider the second equation. Subtract 2.1 from both sides.
2.6x=33.9
Subtract 2.1 from 36 to get 33.9.
x=\frac{33.9}{2.6}
Divide both sides by 2.6.
x=\frac{339}{26}
Expand \frac{33.9}{2.6} by multiplying both numerator and the denominator by 10.
2\times \frac{339}{26}+1.6y=124
Consider the first equation. Insert the known values of variables into the equation.
\frac{339}{13}+1.6y=124
Multiply 2 and \frac{339}{26} to get \frac{339}{13}.
1.6y=124-\frac{339}{13}
Subtract \frac{339}{13} from both sides.
1.6y=\frac{1273}{13}
Subtract \frac{339}{13} from 124 to get \frac{1273}{13}.
y=\frac{\frac{1273}{13}}{1.6}
Divide both sides by 1.6.
y=\frac{1273}{13\times 1.6}
Express \frac{\frac{1273}{13}}{1.6} as a single fraction.
y=\frac{1273}{20.8}
Multiply 13 and 1.6 to get 20.8.
y=\frac{12730}{208}
Expand \frac{1273}{20.8} by multiplying both numerator and the denominator by 10.
y=\frac{6365}{104}
Reduce the fraction \frac{12730}{208} to lowest terms by extracting and canceling out 2.
x=\frac{339}{26} y=\frac{6365}{104}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}