\left\{ \begin{array} { l } { 2 x + - y = 0 } \\ { x ^ { 2 } + y ^ { 2 } = 9 } \end{array} \right.
Solve for x, y
x=-\frac{3\sqrt{5}}{5}\approx -1.341640786\text{, }y=-\frac{6\sqrt{5}}{5}\approx -2.683281573
x=\frac{3\sqrt{5}}{5}\approx 1.341640786\text{, }y=\frac{6\sqrt{5}}{5}\approx 2.683281573
Graph
Share
Copied to clipboard
2x-y=0,y^{2}+x^{2}=9
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x-y=0
Solve 2x-y=0 for x by isolating x on the left hand side of the equal sign.
2x=y
Subtract -y from both sides of the equation.
x=\frac{1}{2}y
Divide both sides by 2.
y^{2}+\left(\frac{1}{2}y\right)^{2}=9
Substitute \frac{1}{2}y for x in the other equation, y^{2}+x^{2}=9.
y^{2}+\frac{1}{4}y^{2}=9
Square \frac{1}{2}y.
\frac{5}{4}y^{2}=9
Add y^{2} to \frac{1}{4}y^{2}.
\frac{5}{4}y^{2}-9=0
Subtract 9 from both sides of the equation.
y=\frac{0±\sqrt{0^{2}-4\times \frac{5}{4}\left(-9\right)}}{2\times \frac{5}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times \left(\frac{1}{2}\right)^{2} for a, 1\times 0\times \frac{1}{2}\times 2 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times \frac{5}{4}\left(-9\right)}}{2\times \frac{5}{4}}
Square 1\times 0\times \frac{1}{2}\times 2.
y=\frac{0±\sqrt{-5\left(-9\right)}}{2\times \frac{5}{4}}
Multiply -4 times 1+1\times \left(\frac{1}{2}\right)^{2}.
y=\frac{0±\sqrt{45}}{2\times \frac{5}{4}}
Multiply -5 times -9.
y=\frac{0±3\sqrt{5}}{2\times \frac{5}{4}}
Take the square root of 45.
y=\frac{0±3\sqrt{5}}{\frac{5}{2}}
Multiply 2 times 1+1\times \left(\frac{1}{2}\right)^{2}.
y=\frac{6\sqrt{5}}{5}
Now solve the equation y=\frac{0±3\sqrt{5}}{\frac{5}{2}} when ± is plus.
y=-\frac{6\sqrt{5}}{5}
Now solve the equation y=\frac{0±3\sqrt{5}}{\frac{5}{2}} when ± is minus.
x=\frac{1}{2}\times \frac{6\sqrt{5}}{5}
There are two solutions for y: \frac{6\sqrt{5}}{5} and -\frac{6\sqrt{5}}{5}. Substitute \frac{6\sqrt{5}}{5} for y in the equation x=\frac{1}{2}y to find the corresponding solution for x that satisfies both equations.
x=\frac{6\sqrt{5}}{2\times 5}
Multiply \frac{1}{2} times \frac{6\sqrt{5}}{5}.
x=\frac{1}{2}\left(-\frac{6\sqrt{5}}{5}\right)
Now substitute -\frac{6\sqrt{5}}{5} for y in the equation x=\frac{1}{2}y and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{6\sqrt{5}}{2\times 5}
Multiply \frac{1}{2} times -\frac{6\sqrt{5}}{5}.
x=\frac{6\sqrt{5}}{2\times 5},y=\frac{6\sqrt{5}}{5}\text{ or }x=-\frac{6\sqrt{5}}{2\times 5},y=-\frac{6\sqrt{5}}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}