Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x-y=0,y^{2}+x^{2}=9
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x-y=0
Solve 2x-y=0 for x by isolating x on the left hand side of the equal sign.
2x=y
Subtract -y from both sides of the equation.
x=\frac{1}{2}y
Divide both sides by 2.
y^{2}+\left(\frac{1}{2}y\right)^{2}=9
Substitute \frac{1}{2}y for x in the other equation, y^{2}+x^{2}=9.
y^{2}+\frac{1}{4}y^{2}=9
Square \frac{1}{2}y.
\frac{5}{4}y^{2}=9
Add y^{2} to \frac{1}{4}y^{2}.
\frac{5}{4}y^{2}-9=0
Subtract 9 from both sides of the equation.
y=\frac{0±\sqrt{0^{2}-4\times \frac{5}{4}\left(-9\right)}}{2\times \frac{5}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\times \left(\frac{1}{2}\right)^{2} for a, 1\times 0\times \frac{1}{2}\times 2 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times \frac{5}{4}\left(-9\right)}}{2\times \frac{5}{4}}
Square 1\times 0\times \frac{1}{2}\times 2.
y=\frac{0±\sqrt{-5\left(-9\right)}}{2\times \frac{5}{4}}
Multiply -4 times 1+1\times \left(\frac{1}{2}\right)^{2}.
y=\frac{0±\sqrt{45}}{2\times \frac{5}{4}}
Multiply -5 times -9.
y=\frac{0±3\sqrt{5}}{2\times \frac{5}{4}}
Take the square root of 45.
y=\frac{0±3\sqrt{5}}{\frac{5}{2}}
Multiply 2 times 1+1\times \left(\frac{1}{2}\right)^{2}.
y=\frac{6\sqrt{5}}{5}
Now solve the equation y=\frac{0±3\sqrt{5}}{\frac{5}{2}} when ± is plus.
y=-\frac{6\sqrt{5}}{5}
Now solve the equation y=\frac{0±3\sqrt{5}}{\frac{5}{2}} when ± is minus.
x=\frac{1}{2}\times \frac{6\sqrt{5}}{5}
There are two solutions for y: \frac{6\sqrt{5}}{5} and -\frac{6\sqrt{5}}{5}. Substitute \frac{6\sqrt{5}}{5} for y in the equation x=\frac{1}{2}y to find the corresponding solution for x that satisfies both equations.
x=\frac{6\sqrt{5}}{2\times 5}
Multiply \frac{1}{2} times \frac{6\sqrt{5}}{5}.
x=\frac{1}{2}\left(-\frac{6\sqrt{5}}{5}\right)
Now substitute -\frac{6\sqrt{5}}{5} for y in the equation x=\frac{1}{2}y and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{6\sqrt{5}}{2\times 5}
Multiply \frac{1}{2} times -\frac{6\sqrt{5}}{5}.
x=\frac{6\sqrt{5}}{2\times 5},y=\frac{6\sqrt{5}}{5}\text{ or }x=-\frac{6\sqrt{5}}{2\times 5},y=-\frac{6\sqrt{5}}{5}
The system is now solved.