Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x+\frac{2}{3}y=178,x+y=123
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+\frac{2}{3}y=178
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=-\frac{2}{3}y+178
Subtract \frac{2y}{3} from both sides of the equation.
x=\frac{1}{2}\left(-\frac{2}{3}y+178\right)
Divide both sides by 2.
x=-\frac{1}{3}y+89
Multiply \frac{1}{2} times -\frac{2y}{3}+178.
-\frac{1}{3}y+89+y=123
Substitute -\frac{y}{3}+89 for x in the other equation, x+y=123.
\frac{2}{3}y+89=123
Add -\frac{y}{3} to y.
\frac{2}{3}y=34
Subtract 89 from both sides of the equation.
y=51
Divide both sides of the equation by \frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{1}{3}\times 51+89
Substitute 51 for y in x=-\frac{1}{3}y+89. Because the resulting equation contains only one variable, you can solve for x directly.
x=-17+89
Multiply -\frac{1}{3} times 51.
x=72
Add 89 to -17.
x=72,y=51
The system is now solved.
2x+\frac{2}{3}y=178,x+y=123
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&\frac{2}{3}\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}178\\123\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&\frac{2}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}2&\frac{2}{3}\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&\frac{2}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}178\\123\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&\frac{2}{3}\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&\frac{2}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}178\\123\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&\frac{2}{3}\\1&1\end{matrix}\right))\left(\begin{matrix}178\\123\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\frac{2}{3}}&-\frac{\frac{2}{3}}{2-\frac{2}{3}}\\-\frac{1}{2-\frac{2}{3}}&\frac{2}{2-\frac{2}{3}}\end{matrix}\right)\left(\begin{matrix}178\\123\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&-\frac{1}{2}\\-\frac{3}{4}&\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}178\\123\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\times 178-\frac{1}{2}\times 123\\-\frac{3}{4}\times 178+\frac{3}{2}\times 123\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}72\\51\end{matrix}\right)
Do the arithmetic.
x=72,y=51
Extract the matrix elements x and y.
2x+\frac{2}{3}y=178,x+y=123
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2x+\frac{2}{3}y=178,2x+2y=2\times 123
To make 2x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 2.
2x+\frac{2}{3}y=178,2x+2y=246
Simplify.
2x-2x+\frac{2}{3}y-2y=178-246
Subtract 2x+2y=246 from 2x+\frac{2}{3}y=178 by subtracting like terms on each side of the equal sign.
\frac{2}{3}y-2y=178-246
Add 2x to -2x. Terms 2x and -2x cancel out, leaving an equation with only one variable that can be solved.
-\frac{4}{3}y=178-246
Add \frac{2y}{3} to -2y.
-\frac{4}{3}y=-68
Add 178 to -246.
y=51
Divide both sides of the equation by -\frac{4}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x+51=123
Substitute 51 for y in x+y=123. Because the resulting equation contains only one variable, you can solve for x directly.
x=72
Subtract 51 from both sides of the equation.
x=72,y=51
The system is now solved.