Skip to main content
Solve for p, q, t
Tick mark Image

Similar Problems from Web Search

Share

-5p-q+3t=-3 2p-3q-3t=3 4p-0q-5t=-8
Reorder the equations.
q=-5p+3t+3
Solve -5p-q+3t=-3 for q.
2p-3\left(-5p+3t+3\right)-3t=3 4p-0\left(-5p+3t+3\right)-5t=-8
Substitute -5p+3t+3 for q in the second and third equation.
p=\frac{12}{17}+\frac{12}{17}t t=\frac{8}{5}+\frac{4}{5}p
Solve these equations for p and t respectively.
t=\frac{8}{5}+\frac{4}{5}\left(\frac{12}{17}+\frac{12}{17}t\right)
Substitute \frac{12}{17}+\frac{12}{17}t for p in the equation t=\frac{8}{5}+\frac{4}{5}p.
t=\frac{184}{37}
Solve t=\frac{8}{5}+\frac{4}{5}\left(\frac{12}{17}+\frac{12}{17}t\right) for t.
p=\frac{12}{17}+\frac{12}{17}\times \frac{184}{37}
Substitute \frac{184}{37} for t in the equation p=\frac{12}{17}+\frac{12}{17}t.
p=\frac{156}{37}
Calculate p from p=\frac{12}{17}+\frac{12}{17}\times \frac{184}{37}.
q=-5\times \frac{156}{37}+3\times \frac{184}{37}+3
Substitute \frac{156}{37} for p and \frac{184}{37} for t in the equation q=-5p+3t+3.
q=-\frac{117}{37}
Calculate q from q=-5\times \frac{156}{37}+3\times \frac{184}{37}+3.
p=\frac{156}{37} q=-\frac{117}{37} t=\frac{184}{37}
The system is now solved.