\left\{ \begin{array} { l } { 2 n - n = 5 } \\ { 3 m + 4 n = 2 } \end{array} \right.
Solve for n, m
n=5
m=-6
Share
Copied to clipboard
n=5
Consider the first equation. Combine 2n and -n to get n.
3m+4\times 5=2
Consider the second equation. Insert the known values of variables into the equation.
3m+20=2
Multiply 4 and 5 to get 20.
3m=2-20
Subtract 20 from both sides.
3m=-18
Subtract 20 from 2 to get -18.
m=\frac{-18}{3}
Divide both sides by 3.
m=-6
Divide -18 by 3 to get -6.
n=5 m=-6
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}