\left\{ \begin{array} { l } { 2 m - 2 n = 4 } \\ { 2 n + ( m - 1 ) \times ( - 1 ) = 3 } \end{array} \right.
Solve for m, n
m=6
n=4
Share
Copied to clipboard
2m-2n=4,-\left(m-1\right)+2n=3
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2m-2n=4
Choose one of the equations and solve it for m by isolating m on the left hand side of the equal sign.
2m=2n+4
Add 2n to both sides of the equation.
m=\frac{1}{2}\left(2n+4\right)
Divide both sides by 2.
m=n+2
Multiply \frac{1}{2} times 4+2n.
-\left(n+2-1\right)+2n=3
Substitute n+2 for m in the other equation, -\left(m-1\right)+2n=3.
-\left(n+1\right)+2n=3
Add 2 to -1.
-n-1+2n=3
Multiply -1 times n+1.
n-1=3
Add -n to 2n.
n=4
Add 1 to both sides of the equation.
m=4+2
Substitute 4 for n in m=n+2. Because the resulting equation contains only one variable, you can solve for m directly.
m=6
Add 2 to 4.
m=6,n=4
The system is now solved.
2m-2n=4,-\left(m-1\right)+2n=3
Put the equations in standard form and then use matrices to solve the system of equations.
-\left(m-1\right)+2n=3
Simplify the second equation to put it in standard form.
-m+1+2n=3
Multiply -1 times m-1.
-m+2n=2
Subtract 1 from both sides of the equation.
\left(\begin{matrix}2&-2\\-1&2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&-2\\-1&2\end{matrix}\right))\left(\begin{matrix}2&-2\\-1&2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-2\\-1&2\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&-2\\-1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-2\\-1&2\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-2\\-1&2\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-2\left(-1\right)\right)}&-\frac{-2}{2\times 2-\left(-2\left(-1\right)\right)}\\-\frac{-1}{2\times 2-\left(-2\left(-1\right)\right)}&\frac{2}{2\times 2-\left(-2\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}1&1\\\frac{1}{2}&1\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}4+2\\\frac{1}{2}\times 4+2\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}6\\4\end{matrix}\right)
Do the arithmetic.
m=6,n=4
Extract the matrix elements m and n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}