\left\{ \begin{array} { l } { 2 k + 1 = 3 Q } \\ { k ^ { 2 } + 1 = 2 Q ^ { 2 } } \end{array} \right.
Solve for k, Q
k=7\text{, }Q=5
k=1\text{, }Q=1
Share
Copied to clipboard
2k+1-3Q=0
Consider the first equation. Subtract 3Q from both sides.
2k-3Q=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
k^{2}+1-2Q^{2}=0
Consider the second equation. Subtract 2Q^{2} from both sides.
k^{2}-2Q^{2}=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
2k-3Q=-1,-2Q^{2}+k^{2}=-1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2k-3Q=-1
Solve 2k-3Q=-1 for k by isolating k on the left hand side of the equal sign.
2k=3Q-1
Subtract -3Q from both sides of the equation.
k=\frac{3}{2}Q-\frac{1}{2}
Divide both sides by 2.
-2Q^{2}+\left(\frac{3}{2}Q-\frac{1}{2}\right)^{2}=-1
Substitute \frac{3}{2}Q-\frac{1}{2} for k in the other equation, -2Q^{2}+k^{2}=-1.
-2Q^{2}+\frac{9}{4}Q^{2}-\frac{3}{2}Q+\frac{1}{4}=-1
Square \frac{3}{2}Q-\frac{1}{2}.
\frac{1}{4}Q^{2}-\frac{3}{2}Q+\frac{1}{4}=-1
Add -2Q^{2} to \frac{9}{4}Q^{2}.
\frac{1}{4}Q^{2}-\frac{3}{2}Q+\frac{5}{4}=0
Add 1 to both sides of the equation.
Q=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\left(-\frac{3}{2}\right)^{2}-4\times \frac{1}{4}\times \frac{5}{4}}}{2\times \frac{1}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2+1\times \left(\frac{3}{2}\right)^{2} for a, 1\left(-\frac{1}{2}\right)\times \frac{3}{2}\times 2 for b, and \frac{5}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
Q=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-4\times \frac{1}{4}\times \frac{5}{4}}}{2\times \frac{1}{4}}
Square 1\left(-\frac{1}{2}\right)\times \frac{3}{2}\times 2.
Q=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-\frac{5}{4}}}{2\times \frac{1}{4}}
Multiply -4 times -2+1\times \left(\frac{3}{2}\right)^{2}.
Q=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9-5}{4}}}{2\times \frac{1}{4}}
Multiply -1 times \frac{5}{4}.
Q=\frac{-\left(-\frac{3}{2}\right)±\sqrt{1}}{2\times \frac{1}{4}}
Add \frac{9}{4} to -\frac{5}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
Q=\frac{-\left(-\frac{3}{2}\right)±1}{2\times \frac{1}{4}}
Take the square root of 1.
Q=\frac{\frac{3}{2}±1}{2\times \frac{1}{4}}
The opposite of 1\left(-\frac{1}{2}\right)\times \frac{3}{2}\times 2 is \frac{3}{2}.
Q=\frac{\frac{3}{2}±1}{\frac{1}{2}}
Multiply 2 times -2+1\times \left(\frac{3}{2}\right)^{2}.
Q=\frac{\frac{5}{2}}{\frac{1}{2}}
Now solve the equation Q=\frac{\frac{3}{2}±1}{\frac{1}{2}} when ± is plus. Add \frac{3}{2} to 1.
Q=5
Divide \frac{5}{2} by \frac{1}{2} by multiplying \frac{5}{2} by the reciprocal of \frac{1}{2}.
Q=\frac{\frac{1}{2}}{\frac{1}{2}}
Now solve the equation Q=\frac{\frac{3}{2}±1}{\frac{1}{2}} when ± is minus. Subtract 1 from \frac{3}{2}.
Q=1
Divide \frac{1}{2} by \frac{1}{2} by multiplying \frac{1}{2} by the reciprocal of \frac{1}{2}.
k=\frac{3}{2}\times 5-\frac{1}{2}
There are two solutions for Q: 5 and 1. Substitute 5 for Q in the equation k=\frac{3}{2}Q-\frac{1}{2} to find the corresponding solution for k that satisfies both equations.
k=\frac{15-1}{2}
Multiply \frac{3}{2} times 5.
k=7
Add \frac{3}{2}\times 5 to -\frac{1}{2}.
k=\frac{3-1}{2}
Now substitute 1 for Q in the equation k=\frac{3}{2}Q-\frac{1}{2} and solve to find the corresponding solution for k that satisfies both equations.
k=1
Add 1\times \frac{3}{2} to -\frac{1}{2}.
k=7,Q=5\text{ or }k=1,Q=1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}