\left\{ \begin{array} { l } { 2 a = a + 2 } \\ { b + 1 = 2 b - 3 } \end{array} \right.
Solve for a, b
a=2
b=4
Share
Copied to clipboard
2a-a=2
Consider the first equation. Subtract a from both sides.
a=2
Combine 2a and -a to get a.
b+1-2b=-3
Consider the second equation. Subtract 2b from both sides.
-b+1=-3
Combine b and -2b to get -b.
-b=-3-1
Subtract 1 from both sides.
-b=-4
Subtract 1 from -3 to get -4.
b=\frac{-4}{-1}
Divide both sides by -1.
b=4
Fraction \frac{-4}{-1} can be simplified to 4 by removing the negative sign from both the numerator and the denominator.
a=2 b=4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}