\left\{ \begin{array} { l } { 2 a = 3 b } \\ { 7 a + 2 b = 200 } \end{array} \right.
Solve for a, b
a=24
b=16
Share
Copied to clipboard
2a-3b=0
Consider the first equation. Subtract 3b from both sides.
2a-3b=0,7a+2b=200
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2a-3b=0
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
2a=3b
Add 3b to both sides of the equation.
a=\frac{1}{2}\times 3b
Divide both sides by 2.
a=\frac{3}{2}b
Multiply \frac{1}{2} times 3b.
7\times \frac{3}{2}b+2b=200
Substitute \frac{3b}{2} for a in the other equation, 7a+2b=200.
\frac{21}{2}b+2b=200
Multiply 7 times \frac{3b}{2}.
\frac{25}{2}b=200
Add \frac{21b}{2} to 2b.
b=16
Divide both sides of the equation by \frac{25}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{3}{2}\times 16
Substitute 16 for b in a=\frac{3}{2}b. Because the resulting equation contains only one variable, you can solve for a directly.
a=24
Multiply \frac{3}{2} times 16.
a=24,b=16
The system is now solved.
2a-3b=0
Consider the first equation. Subtract 3b from both sides.
2a-3b=0,7a+2b=200
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&-3\\7&2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}0\\200\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&-3\\7&2\end{matrix}\right))\left(\begin{matrix}2&-3\\7&2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\7&2\end{matrix}\right))\left(\begin{matrix}0\\200\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&-3\\7&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\7&2\end{matrix}\right))\left(\begin{matrix}0\\200\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\7&2\end{matrix}\right))\left(\begin{matrix}0\\200\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-3\times 7\right)}&-\frac{-3}{2\times 2-\left(-3\times 7\right)}\\-\frac{7}{2\times 2-\left(-3\times 7\right)}&\frac{2}{2\times 2-\left(-3\times 7\right)}\end{matrix}\right)\left(\begin{matrix}0\\200\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{25}&\frac{3}{25}\\-\frac{7}{25}&\frac{2}{25}\end{matrix}\right)\left(\begin{matrix}0\\200\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{3}{25}\times 200\\\frac{2}{25}\times 200\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}24\\16\end{matrix}\right)
Do the arithmetic.
a=24,b=16
Extract the matrix elements a and b.
2a-3b=0
Consider the first equation. Subtract 3b from both sides.
2a-3b=0,7a+2b=200
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
7\times 2a+7\left(-3\right)b=0,2\times 7a+2\times 2b=2\times 200
To make 2a and 7a equal, multiply all terms on each side of the first equation by 7 and all terms on each side of the second by 2.
14a-21b=0,14a+4b=400
Simplify.
14a-14a-21b-4b=-400
Subtract 14a+4b=400 from 14a-21b=0 by subtracting like terms on each side of the equal sign.
-21b-4b=-400
Add 14a to -14a. Terms 14a and -14a cancel out, leaving an equation with only one variable that can be solved.
-25b=-400
Add -21b to -4b.
b=16
Divide both sides by -25.
7a+2\times 16=200
Substitute 16 for b in 7a+2b=200. Because the resulting equation contains only one variable, you can solve for a directly.
7a+32=200
Multiply 2 times 16.
7a=168
Subtract 32 from both sides of the equation.
a=24
Divide both sides by 7.
a=24,b=16
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}