\left\{ \begin{array} { l } { 2 a + 3 b = 156 } \\ { 3 a + b = 122 } \end{array} \right.
Solve for a, b
a=30
b=32
Share
Copied to clipboard
2a+3b=156,3a+b=122
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2a+3b=156
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
2a=-3b+156
Subtract 3b from both sides of the equation.
a=\frac{1}{2}\left(-3b+156\right)
Divide both sides by 2.
a=-\frac{3}{2}b+78
Multiply \frac{1}{2} times -3b+156.
3\left(-\frac{3}{2}b+78\right)+b=122
Substitute -\frac{3b}{2}+78 for a in the other equation, 3a+b=122.
-\frac{9}{2}b+234+b=122
Multiply 3 times -\frac{3b}{2}+78.
-\frac{7}{2}b+234=122
Add -\frac{9b}{2} to b.
-\frac{7}{2}b=-112
Subtract 234 from both sides of the equation.
b=32
Divide both sides of the equation by -\frac{7}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=-\frac{3}{2}\times 32+78
Substitute 32 for b in a=-\frac{3}{2}b+78. Because the resulting equation contains only one variable, you can solve for a directly.
a=-48+78
Multiply -\frac{3}{2} times 32.
a=30
Add 78 to -48.
a=30,b=32
The system is now solved.
2a+3b=156,3a+b=122
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&3\\3&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}156\\122\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&3\\3&1\end{matrix}\right))\left(\begin{matrix}2&3\\3&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&1\end{matrix}\right))\left(\begin{matrix}156\\122\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&3\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&1\end{matrix}\right))\left(\begin{matrix}156\\122\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&1\end{matrix}\right))\left(\begin{matrix}156\\122\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-3\times 3}&-\frac{3}{2-3\times 3}\\-\frac{3}{2-3\times 3}&\frac{2}{2-3\times 3}\end{matrix}\right)\left(\begin{matrix}156\\122\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}&\frac{3}{7}\\\frac{3}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}156\\122\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}\times 156+\frac{3}{7}\times 122\\\frac{3}{7}\times 156-\frac{2}{7}\times 122\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}30\\32\end{matrix}\right)
Do the arithmetic.
a=30,b=32
Extract the matrix elements a and b.
2a+3b=156,3a+b=122
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\times 2a+3\times 3b=3\times 156,2\times 3a+2b=2\times 122
To make 2a and 3a equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 2.
6a+9b=468,6a+2b=244
Simplify.
6a-6a+9b-2b=468-244
Subtract 6a+2b=244 from 6a+9b=468 by subtracting like terms on each side of the equal sign.
9b-2b=468-244
Add 6a to -6a. Terms 6a and -6a cancel out, leaving an equation with only one variable that can be solved.
7b=468-244
Add 9b to -2b.
7b=224
Add 468 to -244.
b=32
Divide both sides by 7.
3a+32=122
Substitute 32 for b in 3a+b=122. Because the resulting equation contains only one variable, you can solve for a directly.
3a=90
Subtract 32 from both sides of the equation.
a=30
Divide both sides by 3.
a=30,b=32
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}