\left\{ \begin{array} { l } { 2 ( x - z ) = 1 } \\ { 3 ( y - z ) = 1 } \\ { ( x + y - 1 ) = 1 } \end{array} \right.
Solve for x, z, y
x = \frac{13}{12} = 1\frac{1}{12} \approx 1.083333333
y=\frac{11}{12}\approx 0.916666667
z=\frac{7}{12}\approx 0.583333333
Share
Copied to clipboard
x+y-1=1 3\left(y-z\right)=1 2\left(x-z\right)=1
Reorder the equations.
x=-y+2
Solve x+y-1=1 for x.
2\left(-y+2-z\right)=1
Substitute -y+2 for x in the equation 2\left(x-z\right)=1.
z=y-\frac{1}{3} y=-z+\frac{3}{2}
Solve the second equation for z and the third equation for y.
y=-\left(y-\frac{1}{3}\right)+\frac{3}{2}
Substitute y-\frac{1}{3} for z in the equation y=-z+\frac{3}{2}.
y=\frac{11}{12}
Solve y=-\left(y-\frac{1}{3}\right)+\frac{3}{2} for y.
z=\frac{11}{12}-\frac{1}{3}
Substitute \frac{11}{12} for y in the equation z=y-\frac{1}{3}.
z=\frac{7}{12}
Calculate z from z=\frac{11}{12}-\frac{1}{3}.
x=-\frac{11}{12}+2
Substitute \frac{11}{12} for y in the equation x=-y+2.
x=\frac{13}{12}
Calculate x from x=-\frac{11}{12}+2.
x=\frac{13}{12} z=\frac{7}{12} y=\frac{11}{12}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}