Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x+6y=7x-2y
Consider the first equation. Use the distributive property to multiply 2 by x+3y.
2x+6y-7x=-2y
Subtract 7x from both sides.
-5x+6y=-2y
Combine 2x and -7x to get -5x.
-5x+6y+2y=0
Add 2y to both sides.
-5x+8y=0
Combine 6y and 2y to get 8y.
3x-2y=7
Consider the second equation. Add 7 to both sides. Anything plus zero gives itself.
-5x+8y=0,3x-2y=7
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-5x+8y=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
-5x=-8y
Subtract 8y from both sides of the equation.
x=-\frac{1}{5}\left(-8\right)y
Divide both sides by -5.
x=\frac{8}{5}y
Multiply -\frac{1}{5} times -8y.
3\times \frac{8}{5}y-2y=7
Substitute \frac{8y}{5} for x in the other equation, 3x-2y=7.
\frac{24}{5}y-2y=7
Multiply 3 times \frac{8y}{5}.
\frac{14}{5}y=7
Add \frac{24y}{5} to -2y.
y=\frac{5}{2}
Divide both sides of the equation by \frac{14}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{8}{5}\times \frac{5}{2}
Substitute \frac{5}{2} for y in x=\frac{8}{5}y. Because the resulting equation contains only one variable, you can solve for x directly.
x=4
Multiply \frac{8}{5} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=4,y=\frac{5}{2}
The system is now solved.
2x+6y=7x-2y
Consider the first equation. Use the distributive property to multiply 2 by x+3y.
2x+6y-7x=-2y
Subtract 7x from both sides.
-5x+6y=-2y
Combine 2x and -7x to get -5x.
-5x+6y+2y=0
Add 2y to both sides.
-5x+8y=0
Combine 6y and 2y to get 8y.
3x-2y=7
Consider the second equation. Add 7 to both sides. Anything plus zero gives itself.
-5x+8y=0,3x-2y=7
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-5&8\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\7\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-5&8\\3&-2\end{matrix}\right))\left(\begin{matrix}-5&8\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&8\\3&-2\end{matrix}\right))\left(\begin{matrix}0\\7\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-5&8\\3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&8\\3&-2\end{matrix}\right))\left(\begin{matrix}0\\7\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&8\\3&-2\end{matrix}\right))\left(\begin{matrix}0\\7\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-5\left(-2\right)-8\times 3}&-\frac{8}{-5\left(-2\right)-8\times 3}\\-\frac{3}{-5\left(-2\right)-8\times 3}&-\frac{5}{-5\left(-2\right)-8\times 3}\end{matrix}\right)\left(\begin{matrix}0\\7\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{4}{7}\\\frac{3}{14}&\frac{5}{14}\end{matrix}\right)\left(\begin{matrix}0\\7\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}\times 7\\\frac{5}{14}\times 7\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\\frac{5}{2}\end{matrix}\right)
Do the arithmetic.
x=4,y=\frac{5}{2}
Extract the matrix elements x and y.
2x+6y=7x-2y
Consider the first equation. Use the distributive property to multiply 2 by x+3y.
2x+6y-7x=-2y
Subtract 7x from both sides.
-5x+6y=-2y
Combine 2x and -7x to get -5x.
-5x+6y+2y=0
Add 2y to both sides.
-5x+8y=0
Combine 6y and 2y to get 8y.
3x-2y=7
Consider the second equation. Add 7 to both sides. Anything plus zero gives itself.
-5x+8y=0,3x-2y=7
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\left(-5\right)x+3\times 8y=0,-5\times 3x-5\left(-2\right)y=-5\times 7
To make -5x and 3x equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by -5.
-15x+24y=0,-15x+10y=-35
Simplify.
-15x+15x+24y-10y=35
Subtract -15x+10y=-35 from -15x+24y=0 by subtracting like terms on each side of the equal sign.
24y-10y=35
Add -15x to 15x. Terms -15x and 15x cancel out, leaving an equation with only one variable that can be solved.
14y=35
Add 24y to -10y.
y=\frac{5}{2}
Divide both sides by 14.
3x-2\times \frac{5}{2}=7
Substitute \frac{5}{2} for y in 3x-2y=7. Because the resulting equation contains only one variable, you can solve for x directly.
3x-5=7
Multiply -2 times \frac{5}{2}.
3x=12
Add 5 to both sides of the equation.
x=4
Divide both sides by 3.
x=4,y=\frac{5}{2}
The system is now solved.