\left\{ \begin{array} { l } { 2 ( x + 2 ) - 3 ( y - 1 ) = 13 } \\ { 3 ( x + 2 ) + 5 ( y - 1 ) = 30.9 } \end{array} \right.
Solve for x, y
x=6.3
y=2.2
Graph
Share
Copied to clipboard
2\left(x+2\right)-3\left(y-1\right)=13,3\left(x+2\right)+5\left(y-1\right)=30.9
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2\left(x+2\right)-3\left(y-1\right)=13
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x+4-3\left(y-1\right)=13
Multiply 2 times x+2.
2x+4-3y+3=13
Multiply -3 times y-1.
2x-3y+7=13
Add 4 to 3.
2x-3y=6
Subtract 7 from both sides of the equation.
2x=3y+6
Add 3y to both sides of the equation.
x=\frac{1}{2}\left(3y+6\right)
Divide both sides by 2.
x=\frac{3}{2}y+3
Multiply \frac{1}{2} times 6+3y.
3\left(\frac{3}{2}y+3+2\right)+5\left(y-1\right)=30.9
Substitute \frac{3y}{2}+3 for x in the other equation, 3\left(x+2\right)+5\left(y-1\right)=30.9.
3\left(\frac{3}{2}y+5\right)+5\left(y-1\right)=30.9
Add 3 to 2.
\frac{9}{2}y+15+5\left(y-1\right)=30.9
Multiply 3 times \frac{3y}{2}+5.
\frac{9}{2}y+15+5y-5=30.9
Multiply 5 times y-1.
\frac{19}{2}y+15-5=30.9
Add \frac{9y}{2} to 5y.
\frac{19}{2}y+10=30.9
Add 15 to -5.
\frac{19}{2}y=20.9
Subtract 10 from both sides of the equation.
y=\frac{11}{5}
Divide both sides of the equation by \frac{19}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{3}{2}\times \frac{11}{5}+3
Substitute \frac{11}{5} for y in x=\frac{3}{2}y+3. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{33}{10}+3
Multiply \frac{3}{2} times \frac{11}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{63}{10}
Add 3 to \frac{33}{10}.
x=\frac{63}{10},y=\frac{11}{5}
The system is now solved.
2\left(x+2\right)-3\left(y-1\right)=13,3\left(x+2\right)+5\left(y-1\right)=30.9
Put the equations in standard form and then use matrices to solve the system of equations.
2\left(x+2\right)-3\left(y-1\right)=13
Simplify the first equation to put it in standard form.
2x+4-3\left(y-1\right)=13
Multiply 2 times x+2.
2x+4-3y+3=13
Multiply -3 times y-1.
2x-3y+7=13
Add 4 to 3.
2x-3y=6
Subtract 7 from both sides of the equation.
3\left(x+2\right)+5\left(y-1\right)=30.9
Simplify the second equation to put it in standard form.
3x+6+5\left(y-1\right)=30.9
Multiply 3 times x+2.
3x+6+5y-5=30.9
Multiply 5 times y-1.
3x+5y+1=30.9
Add 6 to -5.
3x+5y=29.9
Subtract 1 from both sides of the equation.
\left(\begin{matrix}2&-3\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\29.9\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&-3\\3&5\end{matrix}\right))\left(\begin{matrix}2&-3\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&5\end{matrix}\right))\left(\begin{matrix}6\\29.9\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&-3\\3&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&5\end{matrix}\right))\left(\begin{matrix}6\\29.9\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&5\end{matrix}\right))\left(\begin{matrix}6\\29.9\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-\left(-3\times 3\right)}&-\frac{-3}{2\times 5-\left(-3\times 3\right)}\\-\frac{3}{2\times 5-\left(-3\times 3\right)}&\frac{2}{2\times 5-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}6\\29.9\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{19}&\frac{3}{19}\\-\frac{3}{19}&\frac{2}{19}\end{matrix}\right)\left(\begin{matrix}6\\29.9\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{19}\times 6+\frac{3}{19}\times 29.9\\-\frac{3}{19}\times 6+\frac{2}{19}\times 29.9\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{63}{10}\\\frac{11}{5}\end{matrix}\right)
Do the arithmetic.
x=\frac{63}{10},y=\frac{11}{5}
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}