\left\{ \begin{array} { l } { 2 ( 2 x - 3 ) + 3 ( y + 4 ) = 7 } \\ { 4 ( x + 2 ) - 5 ( 2 - y ) = - 3 } \end{array} \right.
Solve for x, y
x=1
y=-1
Graph
Share
Copied to clipboard
2\left(2x-3\right)+3\left(y+4\right)=7,4\left(x+2\right)-5\left(-y+2\right)=-3
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2\left(2x-3\right)+3\left(y+4\right)=7
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
4x-6+3\left(y+4\right)=7
Multiply 2 times 2x-3.
4x-6+3y+12=7
Multiply 3 times y+4.
4x+3y+6=7
Add -6 to 12.
4x+3y=1
Subtract 6 from both sides of the equation.
4x=-3y+1
Subtract 3y from both sides of the equation.
x=\frac{1}{4}\left(-3y+1\right)
Divide both sides by 4.
x=-\frac{3}{4}y+\frac{1}{4}
Multiply \frac{1}{4} times -3y+1.
4\left(-\frac{3}{4}y+\frac{1}{4}+2\right)-5\left(-y+2\right)=-3
Substitute \frac{-3y+1}{4} for x in the other equation, 4\left(x+2\right)-5\left(-y+2\right)=-3.
4\left(-\frac{3}{4}y+\frac{9}{4}\right)-5\left(-y+2\right)=-3
Add \frac{1}{4} to 2.
-3y+9-5\left(-y+2\right)=-3
Multiply 4 times \frac{-3y+9}{4}.
-3y+9+5y-10=-3
Multiply -5 times -y+2.
2y+9-10=-3
Add -3y to 5y.
2y-1=-3
Add 9 to -10.
2y=-2
Add 1 to both sides of the equation.
y=-1
Divide both sides by 2.
x=-\frac{3}{4}\left(-1\right)+\frac{1}{4}
Substitute -1 for y in x=-\frac{3}{4}y+\frac{1}{4}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{3+1}{4}
Multiply -\frac{3}{4} times -1.
x=1
Add \frac{1}{4} to \frac{3}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=1,y=-1
The system is now solved.
2\left(2x-3\right)+3\left(y+4\right)=7,4\left(x+2\right)-5\left(-y+2\right)=-3
Put the equations in standard form and then use matrices to solve the system of equations.
2\left(2x-3\right)+3\left(y+4\right)=7
Simplify the first equation to put it in standard form.
4x-6+3\left(y+4\right)=7
Multiply 2 times 2x-3.
4x-6+3y+12=7
Multiply 3 times y+4.
4x+3y+6=7
Add -6 to 12.
4x+3y=1
Subtract 6 from both sides of the equation.
4\left(x+2\right)-5\left(-y+2\right)=-3
Simplify the second equation to put it in standard form.
4x+8-5\left(-y+2\right)=-3
Multiply 4 times x+2.
4x+8+5y-10=-3
Multiply -5 times -y+2.
4x+5y-2=-3
Add 8 to -10.
4x+5y=-1
Add 2 to both sides of the equation.
\left(\begin{matrix}4&3\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&3\\4&5\end{matrix}\right))\left(\begin{matrix}4&3\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\4&5\end{matrix}\right))\left(\begin{matrix}1\\-1\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&3\\4&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\4&5\end{matrix}\right))\left(\begin{matrix}1\\-1\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\4&5\end{matrix}\right))\left(\begin{matrix}1\\-1\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-3\times 4}&-\frac{3}{4\times 5-3\times 4}\\-\frac{4}{4\times 5-3\times 4}&\frac{4}{4\times 5-3\times 4}\end{matrix}\right)\left(\begin{matrix}1\\-1\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{8}&-\frac{3}{8}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}1\\-1\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{8}-\frac{3}{8}\left(-1\right)\\-\frac{1}{2}+\frac{1}{2}\left(-1\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Do the arithmetic.
x=1,y=-1
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}