\left\{ \begin{array} { l } { 2 \times 33 ( 6 a + 6 ) = 22 } \\ { 2 \times 33 ( 20 a + b ) = 24 } \end{array} \right.
Solve for a, b
a=-\frac{17}{18}\approx -0.944444444
b = \frac{1906}{99} = 19\frac{25}{99} \approx 19.252525253
Share
Copied to clipboard
6\left(2\times 33\right)a+6\left(2\times 33\right)=22
Consider the first equation. Use the distributive property to multiply 2\times 33 by 6a+6.
6\left(2\times 33\right)a=22-6\left(2\times 33\right)
Subtract 6\left(2\times 33\right) from both sides.
20\left(2\times 33\right)a+2\times 33b=24
Consider the second equation. Use the distributive property to multiply 2\times 33 by 20a+b.
396a=-374,1320a+66b=24
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
396a=-374
Pick one of the two equations which is more simple to solve for a by isolating a on the left hand side of the equal sign.
a=-\frac{17}{18}
Divide both sides by 396.
1320\left(-\frac{17}{18}\right)+66b=24
Substitute -\frac{17}{18} for a in the other equation, 1320a+66b=24.
-\frac{3740}{3}+66b=24
Multiply 1320 times -\frac{17}{18}.
66b=\frac{3812}{3}
Add \frac{3740}{3} to both sides of the equation.
b=\frac{1906}{99}
Divide both sides by 66.
a=-\frac{17}{18},b=\frac{1906}{99}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}