Skip to main content
Solve for a, b, c
Tick mark Image

Similar Problems from Web Search

Share

a=\frac{1}{8}+\frac{1}{2}b-\frac{1}{4}c
Solve 2=16a-8b+4c for a.
0=-32\left(\frac{1}{8}+\frac{1}{2}b-\frac{1}{4}c\right)+12b-45 2=-80\left(\frac{1}{8}+\frac{1}{2}b-\frac{1}{4}c\right)+16b
Substitute \frac{1}{8}+\frac{1}{2}b-\frac{1}{4}c for a in the second and third equation.
b=-\frac{49}{4}+2c c=\frac{3}{5}+\frac{6}{5}b
Solve these equations for b and c respectively.
c=\frac{3}{5}+\frac{6}{5}\left(-\frac{49}{4}+2c\right)
Substitute -\frac{49}{4}+2c for b in the equation c=\frac{3}{5}+\frac{6}{5}b.
c=\frac{141}{14}
Solve c=\frac{3}{5}+\frac{6}{5}\left(-\frac{49}{4}+2c\right) for c.
b=-\frac{49}{4}+2\times \frac{141}{14}
Substitute \frac{141}{14} for c in the equation b=-\frac{49}{4}+2c.
b=\frac{221}{28}
Calculate b from b=-\frac{49}{4}+2\times \frac{141}{14}.
a=\frac{1}{8}+\frac{1}{2}\times \frac{221}{28}-\frac{1}{4}\times \frac{141}{14}
Substitute \frac{221}{28} for b and \frac{141}{14} for c in the equation a=\frac{1}{8}+\frac{1}{2}b-\frac{1}{4}c.
a=\frac{87}{56}
Calculate a from a=\frac{1}{8}+\frac{1}{2}\times \frac{221}{28}-\frac{1}{4}\times \frac{141}{14}.
a=\frac{87}{56} b=\frac{221}{28} c=\frac{141}{14}
The system is now solved.