\left\{ \begin{array} { l } { 2 = 1 + n } \\ { \frac { 1 } { 3 } m + 4 = 5 } \end{array} \right.
Solve for n, m
n=1
m=3
Share
Copied to clipboard
1+n=2
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
n=2-1
Subtract 1 from both sides.
n=1
Subtract 1 from 2 to get 1.
\frac{1}{3}m=5-4
Consider the second equation. Subtract 4 from both sides.
\frac{1}{3}m=1
Subtract 4 from 5 to get 1.
m=1\times 3
Multiply both sides by 3, the reciprocal of \frac{1}{3}.
m=3
Multiply 1 and 3 to get 3.
n=1 m=3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}