\left\{ \begin{array} { l } { 18 x + 10 y = 20 } \\ { 10 x + 11 y = 16 } \end{array} \right.
Solve for x, y
x=\frac{30}{49}\approx 0.612244898
y=\frac{44}{49}\approx 0.897959184
Graph
Share
Copied to clipboard
18x+10y=20,10x+11y=16
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
18x+10y=20
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
18x=-10y+20
Subtract 10y from both sides of the equation.
x=\frac{1}{18}\left(-10y+20\right)
Divide both sides by 18.
x=-\frac{5}{9}y+\frac{10}{9}
Multiply \frac{1}{18} times -10y+20.
10\left(-\frac{5}{9}y+\frac{10}{9}\right)+11y=16
Substitute \frac{-5y+10}{9} for x in the other equation, 10x+11y=16.
-\frac{50}{9}y+\frac{100}{9}+11y=16
Multiply 10 times \frac{-5y+10}{9}.
\frac{49}{9}y+\frac{100}{9}=16
Add -\frac{50y}{9} to 11y.
\frac{49}{9}y=\frac{44}{9}
Subtract \frac{100}{9} from both sides of the equation.
y=\frac{44}{49}
Divide both sides of the equation by \frac{49}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{5}{9}\times \frac{44}{49}+\frac{10}{9}
Substitute \frac{44}{49} for y in x=-\frac{5}{9}y+\frac{10}{9}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{220}{441}+\frac{10}{9}
Multiply -\frac{5}{9} times \frac{44}{49} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{30}{49}
Add \frac{10}{9} to -\frac{220}{441} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{30}{49},y=\frac{44}{49}
The system is now solved.
18x+10y=20,10x+11y=16
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}18&10\\10&11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\16\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}18&10\\10&11\end{matrix}\right))\left(\begin{matrix}18&10\\10&11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}18&10\\10&11\end{matrix}\right))\left(\begin{matrix}20\\16\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}18&10\\10&11\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}18&10\\10&11\end{matrix}\right))\left(\begin{matrix}20\\16\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}18&10\\10&11\end{matrix}\right))\left(\begin{matrix}20\\16\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{18\times 11-10\times 10}&-\frac{10}{18\times 11-10\times 10}\\-\frac{10}{18\times 11-10\times 10}&\frac{18}{18\times 11-10\times 10}\end{matrix}\right)\left(\begin{matrix}20\\16\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{98}&-\frac{5}{49}\\-\frac{5}{49}&\frac{9}{49}\end{matrix}\right)\left(\begin{matrix}20\\16\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{98}\times 20-\frac{5}{49}\times 16\\-\frac{5}{49}\times 20+\frac{9}{49}\times 16\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{30}{49}\\\frac{44}{49}\end{matrix}\right)
Do the arithmetic.
x=\frac{30}{49},y=\frac{44}{49}
Extract the matrix elements x and y.
18x+10y=20,10x+11y=16
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10\times 18x+10\times 10y=10\times 20,18\times 10x+18\times 11y=18\times 16
To make 18x and 10x equal, multiply all terms on each side of the first equation by 10 and all terms on each side of the second by 18.
180x+100y=200,180x+198y=288
Simplify.
180x-180x+100y-198y=200-288
Subtract 180x+198y=288 from 180x+100y=200 by subtracting like terms on each side of the equal sign.
100y-198y=200-288
Add 180x to -180x. Terms 180x and -180x cancel out, leaving an equation with only one variable that can be solved.
-98y=200-288
Add 100y to -198y.
-98y=-88
Add 200 to -288.
y=\frac{44}{49}
Divide both sides by -98.
10x+11\times \frac{44}{49}=16
Substitute \frac{44}{49} for y in 10x+11y=16. Because the resulting equation contains only one variable, you can solve for x directly.
10x+\frac{484}{49}=16
Multiply 11 times \frac{44}{49}.
10x=\frac{300}{49}
Subtract \frac{484}{49} from both sides of the equation.
x=\frac{30}{49}
Divide both sides by 10.
x=\frac{30}{49},y=\frac{44}{49}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}