Skip to main content
Solve for a, b
Tick mark Image

Similar Problems from Web Search

Share

3a+b=16
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
24a-155a=b
Consider the second equation. Subtract 155a from both sides.
-131a=b
Combine 24a and -155a to get -131a.
-131a-b=0
Subtract b from both sides.
3a+b=16,-131a-b=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3a+b=16
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
3a=-b+16
Subtract b from both sides of the equation.
a=\frac{1}{3}\left(-b+16\right)
Divide both sides by 3.
a=-\frac{1}{3}b+\frac{16}{3}
Multiply \frac{1}{3} times -b+16.
-131\left(-\frac{1}{3}b+\frac{16}{3}\right)-b=0
Substitute \frac{-b+16}{3} for a in the other equation, -131a-b=0.
\frac{131}{3}b-\frac{2096}{3}-b=0
Multiply -131 times \frac{-b+16}{3}.
\frac{128}{3}b-\frac{2096}{3}=0
Add \frac{131b}{3} to -b.
\frac{128}{3}b=\frac{2096}{3}
Add \frac{2096}{3} to both sides of the equation.
b=\frac{131}{8}
Divide both sides of the equation by \frac{128}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=-\frac{1}{3}\times \frac{131}{8}+\frac{16}{3}
Substitute \frac{131}{8} for b in a=-\frac{1}{3}b+\frac{16}{3}. Because the resulting equation contains only one variable, you can solve for a directly.
a=-\frac{131}{24}+\frac{16}{3}
Multiply -\frac{1}{3} times \frac{131}{8} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
a=-\frac{1}{8}
Add \frac{16}{3} to -\frac{131}{24} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
a=-\frac{1}{8},b=\frac{131}{8}
The system is now solved.
3a+b=16
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
24a-155a=b
Consider the second equation. Subtract 155a from both sides.
-131a=b
Combine 24a and -155a to get -131a.
-131a-b=0
Subtract b from both sides.
3a+b=16,-131a-b=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&1\\-131&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}16\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&1\\-131&-1\end{matrix}\right))\left(\begin{matrix}3&1\\-131&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-131&-1\end{matrix}\right))\left(\begin{matrix}16\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&1\\-131&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-131&-1\end{matrix}\right))\left(\begin{matrix}16\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-131&-1\end{matrix}\right))\left(\begin{matrix}16\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-131\right)}&-\frac{1}{3\left(-1\right)-\left(-131\right)}\\-\frac{-131}{3\left(-1\right)-\left(-131\right)}&\frac{3}{3\left(-1\right)-\left(-131\right)}\end{matrix}\right)\left(\begin{matrix}16\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{128}&-\frac{1}{128}\\\frac{131}{128}&\frac{3}{128}\end{matrix}\right)\left(\begin{matrix}16\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{128}\times 16\\\frac{131}{128}\times 16\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{8}\\\frac{131}{8}\end{matrix}\right)
Do the arithmetic.
a=-\frac{1}{8},b=\frac{131}{8}
Extract the matrix elements a and b.
3a+b=16
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
24a-155a=b
Consider the second equation. Subtract 155a from both sides.
-131a=b
Combine 24a and -155a to get -131a.
-131a-b=0
Subtract b from both sides.
3a+b=16,-131a-b=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-131\times 3a-131b=-131\times 16,3\left(-131\right)a+3\left(-1\right)b=0
To make 3a and -131a equal, multiply all terms on each side of the first equation by -131 and all terms on each side of the second by 3.
-393a-131b=-2096,-393a-3b=0
Simplify.
-393a+393a-131b+3b=-2096
Subtract -393a-3b=0 from -393a-131b=-2096 by subtracting like terms on each side of the equal sign.
-131b+3b=-2096
Add -393a to 393a. Terms -393a and 393a cancel out, leaving an equation with only one variable that can be solved.
-128b=-2096
Add -131b to 3b.
b=\frac{131}{8}
Divide both sides by -128.
-131a-\frac{131}{8}=0
Substitute \frac{131}{8} for b in -131a-b=0. Because the resulting equation contains only one variable, you can solve for a directly.
-131a=\frac{131}{8}
Add \frac{131}{8} to both sides of the equation.
a=-\frac{1}{8}
Divide both sides by -131.
a=-\frac{1}{8},b=\frac{131}{8}
The system is now solved.