Skip to main content
Solve for k, b
Tick mark Image

Similar Problems from Web Search

Share

50k+b=150
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
200k+b=200
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
50k+b=150,200k+b=200
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
50k+b=150
Choose one of the equations and solve it for k by isolating k on the left hand side of the equal sign.
50k=-b+150
Subtract b from both sides of the equation.
k=\frac{1}{50}\left(-b+150\right)
Divide both sides by 50.
k=-\frac{1}{50}b+3
Multiply \frac{1}{50} times -b+150.
200\left(-\frac{1}{50}b+3\right)+b=200
Substitute -\frac{b}{50}+3 for k in the other equation, 200k+b=200.
-4b+600+b=200
Multiply 200 times -\frac{b}{50}+3.
-3b+600=200
Add -4b to b.
-3b=-400
Subtract 600 from both sides of the equation.
b=\frac{400}{3}
Divide both sides by -3.
k=-\frac{1}{50}\times \frac{400}{3}+3
Substitute \frac{400}{3} for b in k=-\frac{1}{50}b+3. Because the resulting equation contains only one variable, you can solve for k directly.
k=-\frac{8}{3}+3
Multiply -\frac{1}{50} times \frac{400}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
k=\frac{1}{3}
Add 3 to -\frac{8}{3}.
k=\frac{1}{3},b=\frac{400}{3}
The system is now solved.
50k+b=150
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
200k+b=200
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
50k+b=150,200k+b=200
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}50&1\\200&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}150\\200\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}50&1\\200&1\end{matrix}\right))\left(\begin{matrix}50&1\\200&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}50&1\\200&1\end{matrix}\right))\left(\begin{matrix}150\\200\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}50&1\\200&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}50&1\\200&1\end{matrix}\right))\left(\begin{matrix}150\\200\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}50&1\\200&1\end{matrix}\right))\left(\begin{matrix}150\\200\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{50-200}&-\frac{1}{50-200}\\-\frac{200}{50-200}&\frac{50}{50-200}\end{matrix}\right)\left(\begin{matrix}150\\200\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{150}&\frac{1}{150}\\\frac{4}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}150\\200\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{150}\times 150+\frac{1}{150}\times 200\\\frac{4}{3}\times 150-\frac{1}{3}\times 200\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\\\frac{400}{3}\end{matrix}\right)
Do the arithmetic.
k=\frac{1}{3},b=\frac{400}{3}
Extract the matrix elements k and b.
50k+b=150
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
200k+b=200
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
50k+b=150,200k+b=200
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
50k-200k+b-b=150-200
Subtract 200k+b=200 from 50k+b=150 by subtracting like terms on each side of the equal sign.
50k-200k=150-200
Add b to -b. Terms b and -b cancel out, leaving an equation with only one variable that can be solved.
-150k=150-200
Add 50k to -200k.
-150k=-50
Add 150 to -200.
k=\frac{1}{3}
Divide both sides by -150.
200\times \frac{1}{3}+b=200
Substitute \frac{1}{3} for k in 200k+b=200. Because the resulting equation contains only one variable, you can solve for b directly.
\frac{200}{3}+b=200
Multiply 200 times \frac{1}{3}.
b=\frac{400}{3}
Subtract \frac{200}{3} from both sides of the equation.
k=\frac{1}{3},b=\frac{400}{3}
The system is now solved.