\left\{ \begin{array} { l } { 150 = 35 x + y } \\ { 130 = 37 x + y } \end{array} \right.
Solve for x, y
x=-10
y=500
Graph
Share
Copied to clipboard
35x+y=150
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
37x+y=130
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
35x+y=150,37x+y=130
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
35x+y=150
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
35x=-y+150
Subtract y from both sides of the equation.
x=\frac{1}{35}\left(-y+150\right)
Divide both sides by 35.
x=-\frac{1}{35}y+\frac{30}{7}
Multiply \frac{1}{35} times -y+150.
37\left(-\frac{1}{35}y+\frac{30}{7}\right)+y=130
Substitute -\frac{y}{35}+\frac{30}{7} for x in the other equation, 37x+y=130.
-\frac{37}{35}y+\frac{1110}{7}+y=130
Multiply 37 times -\frac{y}{35}+\frac{30}{7}.
-\frac{2}{35}y+\frac{1110}{7}=130
Add -\frac{37y}{35} to y.
-\frac{2}{35}y=-\frac{200}{7}
Subtract \frac{1110}{7} from both sides of the equation.
y=500
Divide both sides of the equation by -\frac{2}{35}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{1}{35}\times 500+\frac{30}{7}
Substitute 500 for y in x=-\frac{1}{35}y+\frac{30}{7}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-100+30}{7}
Multiply -\frac{1}{35} times 500.
x=-10
Add \frac{30}{7} to -\frac{100}{7} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-10,y=500
The system is now solved.
35x+y=150
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
37x+y=130
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
35x+y=150,37x+y=130
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}35&1\\37&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}150\\130\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}35&1\\37&1\end{matrix}\right))\left(\begin{matrix}35&1\\37&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}35&1\\37&1\end{matrix}\right))\left(\begin{matrix}150\\130\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}35&1\\37&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}35&1\\37&1\end{matrix}\right))\left(\begin{matrix}150\\130\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}35&1\\37&1\end{matrix}\right))\left(\begin{matrix}150\\130\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{35-37}&-\frac{1}{35-37}\\-\frac{37}{35-37}&\frac{35}{35-37}\end{matrix}\right)\left(\begin{matrix}150\\130\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\\frac{37}{2}&-\frac{35}{2}\end{matrix}\right)\left(\begin{matrix}150\\130\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 150+\frac{1}{2}\times 130\\\frac{37}{2}\times 150-\frac{35}{2}\times 130\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\500\end{matrix}\right)
Do the arithmetic.
x=-10,y=500
Extract the matrix elements x and y.
35x+y=150
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
37x+y=130
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
35x+y=150,37x+y=130
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
35x-37x+y-y=150-130
Subtract 37x+y=130 from 35x+y=150 by subtracting like terms on each side of the equal sign.
35x-37x=150-130
Add y to -y. Terms y and -y cancel out, leaving an equation with only one variable that can be solved.
-2x=150-130
Add 35x to -37x.
-2x=20
Add 150 to -130.
x=-10
Divide both sides by -2.
37\left(-10\right)+y=130
Substitute -10 for x in 37x+y=130. Because the resulting equation contains only one variable, you can solve for y directly.
-370+y=130
Multiply 37 times -10.
y=500
Add 370 to both sides of the equation.
x=-10,y=500
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}