\left\{ \begin{array} { l } { 15 x + y = 1500 } \\ { 22.5 x + y = 3000 } \end{array} \right.
Solve for x, y
x=200
y=-1500
Graph
Share
Copied to clipboard
15x+y=1500,22.5x+y=3000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
15x+y=1500
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
15x=-y+1500
Subtract y from both sides of the equation.
x=\frac{1}{15}\left(-y+1500\right)
Divide both sides by 15.
x=-\frac{1}{15}y+100
Multiply \frac{1}{15} times -y+1500.
22.5\left(-\frac{1}{15}y+100\right)+y=3000
Substitute -\frac{y}{15}+100 for x in the other equation, 22.5x+y=3000.
-\frac{3}{2}y+2250+y=3000
Multiply 22.5 times -\frac{y}{15}+100.
-\frac{1}{2}y+2250=3000
Add -\frac{3y}{2} to y.
-\frac{1}{2}y=750
Subtract 2250 from both sides of the equation.
y=-1500
Multiply both sides by -2.
x=-\frac{1}{15}\left(-1500\right)+100
Substitute -1500 for y in x=-\frac{1}{15}y+100. Because the resulting equation contains only one variable, you can solve for x directly.
x=100+100
Multiply -\frac{1}{15} times -1500.
x=200
Add 100 to 100.
x=200,y=-1500
The system is now solved.
15x+y=1500,22.5x+y=3000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}15&1\\22.5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1500\\3000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}15&1\\22.5&1\end{matrix}\right))\left(\begin{matrix}15&1\\22.5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&1\\22.5&1\end{matrix}\right))\left(\begin{matrix}1500\\3000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}15&1\\22.5&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&1\\22.5&1\end{matrix}\right))\left(\begin{matrix}1500\\3000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&1\\22.5&1\end{matrix}\right))\left(\begin{matrix}1500\\3000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15-22.5}&-\frac{1}{15-22.5}\\-\frac{22.5}{15-22.5}&\frac{15}{15-22.5}\end{matrix}\right)\left(\begin{matrix}1500\\3000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{15}&\frac{2}{15}\\3&-2\end{matrix}\right)\left(\begin{matrix}1500\\3000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{15}\times 1500+\frac{2}{15}\times 3000\\3\times 1500-2\times 3000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}200\\-1500\end{matrix}\right)
Do the arithmetic.
x=200,y=-1500
Extract the matrix elements x and y.
15x+y=1500,22.5x+y=3000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
15x-22.5x+y-y=1500-3000
Subtract 22.5x+y=3000 from 15x+y=1500 by subtracting like terms on each side of the equal sign.
15x-22.5x=1500-3000
Add y to -y. Terms y and -y cancel out, leaving an equation with only one variable that can be solved.
-7.5x=1500-3000
Add 15x to -\frac{45x}{2}.
-7.5x=-1500
Add 1500 to -3000.
x=200
Divide both sides of the equation by -7.5, which is the same as multiplying both sides by the reciprocal of the fraction.
22.5\times 200+y=3000
Substitute 200 for x in 22.5x+y=3000. Because the resulting equation contains only one variable, you can solve for y directly.
4500+y=3000
Multiply 22.5 times 200.
y=-1500
Subtract 4500 from both sides of the equation.
x=200,y=-1500
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}