\left\{ \begin{array} { l } { 15 x + y = 0 } \\ { 16 y = - 3 } \end{array} \right.
Solve for x, y
x=\frac{1}{80}=0.0125
y=-\frac{3}{16}=-0.1875
Graph
Share
Copied to clipboard
y=-\frac{3}{16}
Consider the second equation. Divide both sides by 16.
15x-\frac{3}{16}=0
Consider the first equation. Insert the known values of variables into the equation.
15x=\frac{3}{16}
Add \frac{3}{16} to both sides. Anything plus zero gives itself.
x=\frac{\frac{3}{16}}{15}
Divide both sides by 15.
x=\frac{3}{16\times 15}
Express \frac{\frac{3}{16}}{15} as a single fraction.
x=\frac{3}{240}
Multiply 16 and 15 to get 240.
x=\frac{1}{80}
Reduce the fraction \frac{3}{240} to lowest terms by extracting and canceling out 3.
x=\frac{1}{80} y=-\frac{3}{16}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}