\left\{ \begin{array} { l } { 15 x + 20 y = 8500 } \\ { 10 x + 10 y = 5000 } \end{array} \right.
Solve for x, y
x=300
y=200
Graph
Share
Copied to clipboard
15x+20y=8500,10x+10y=5000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
15x+20y=8500
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
15x=-20y+8500
Subtract 20y from both sides of the equation.
x=\frac{1}{15}\left(-20y+8500\right)
Divide both sides by 15.
x=-\frac{4}{3}y+\frac{1700}{3}
Multiply \frac{1}{15} times -20y+8500.
10\left(-\frac{4}{3}y+\frac{1700}{3}\right)+10y=5000
Substitute \frac{-4y+1700}{3} for x in the other equation, 10x+10y=5000.
-\frac{40}{3}y+\frac{17000}{3}+10y=5000
Multiply 10 times \frac{-4y+1700}{3}.
-\frac{10}{3}y+\frac{17000}{3}=5000
Add -\frac{40y}{3} to 10y.
-\frac{10}{3}y=-\frac{2000}{3}
Subtract \frac{17000}{3} from both sides of the equation.
y=200
Divide both sides of the equation by -\frac{10}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{4}{3}\times 200+\frac{1700}{3}
Substitute 200 for y in x=-\frac{4}{3}y+\frac{1700}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-800+1700}{3}
Multiply -\frac{4}{3} times 200.
x=300
Add \frac{1700}{3} to -\frac{800}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=300,y=200
The system is now solved.
15x+20y=8500,10x+10y=5000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}15&20\\10&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8500\\5000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}15&20\\10&10\end{matrix}\right))\left(\begin{matrix}15&20\\10&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&20\\10&10\end{matrix}\right))\left(\begin{matrix}8500\\5000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}15&20\\10&10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&20\\10&10\end{matrix}\right))\left(\begin{matrix}8500\\5000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&20\\10&10\end{matrix}\right))\left(\begin{matrix}8500\\5000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{15\times 10-20\times 10}&-\frac{20}{15\times 10-20\times 10}\\-\frac{10}{15\times 10-20\times 10}&\frac{15}{15\times 10-20\times 10}\end{matrix}\right)\left(\begin{matrix}8500\\5000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{2}{5}\\\frac{1}{5}&-\frac{3}{10}\end{matrix}\right)\left(\begin{matrix}8500\\5000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 8500+\frac{2}{5}\times 5000\\\frac{1}{5}\times 8500-\frac{3}{10}\times 5000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}300\\200\end{matrix}\right)
Do the arithmetic.
x=300,y=200
Extract the matrix elements x and y.
15x+20y=8500,10x+10y=5000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10\times 15x+10\times 20y=10\times 8500,15\times 10x+15\times 10y=15\times 5000
To make 15x and 10x equal, multiply all terms on each side of the first equation by 10 and all terms on each side of the second by 15.
150x+200y=85000,150x+150y=75000
Simplify.
150x-150x+200y-150y=85000-75000
Subtract 150x+150y=75000 from 150x+200y=85000 by subtracting like terms on each side of the equal sign.
200y-150y=85000-75000
Add 150x to -150x. Terms 150x and -150x cancel out, leaving an equation with only one variable that can be solved.
50y=85000-75000
Add 200y to -150y.
50y=10000
Add 85000 to -75000.
y=200
Divide both sides by 50.
10x+10\times 200=5000
Substitute 200 for y in 10x+10y=5000. Because the resulting equation contains only one variable, you can solve for x directly.
10x+2000=5000
Multiply 10 times 200.
10x=3000
Subtract 2000 from both sides of the equation.
x=300
Divide both sides by 10.
x=300,y=200
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}