\left\{ \begin{array} { l } { 15 ( x + y ) = 600 } \\ { 3 x = 5 y } \end{array} \right.
Solve for x, y
x=25
y=15
Graph
Share
Copied to clipboard
x+y=\frac{600}{15}
Consider the first equation. Divide both sides by 15.
x+y=40
Divide 600 by 15 to get 40.
3x-5y=0
Consider the second equation. Subtract 5y from both sides.
x+y=40,3x-5y=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=40
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+40
Subtract y from both sides of the equation.
3\left(-y+40\right)-5y=0
Substitute -y+40 for x in the other equation, 3x-5y=0.
-3y+120-5y=0
Multiply 3 times -y+40.
-8y+120=0
Add -3y to -5y.
-8y=-120
Subtract 120 from both sides of the equation.
y=15
Divide both sides by -8.
x=-15+40
Substitute 15 for y in x=-y+40. Because the resulting equation contains only one variable, you can solve for x directly.
x=25
Add 40 to -15.
x=25,y=15
The system is now solved.
x+y=\frac{600}{15}
Consider the first equation. Divide both sides by 15.
x+y=40
Divide 600 by 15 to get 40.
3x-5y=0
Consider the second equation. Subtract 5y from both sides.
x+y=40,3x-5y=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\3&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\3&-5\end{matrix}\right))\left(\begin{matrix}1&1\\3&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-5\end{matrix}\right))\left(\begin{matrix}40\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\3&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-5\end{matrix}\right))\left(\begin{matrix}40\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-5\end{matrix}\right))\left(\begin{matrix}40\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-5-3}&-\frac{1}{-5-3}\\-\frac{3}{-5-3}&\frac{1}{-5-3}\end{matrix}\right)\left(\begin{matrix}40\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{8}&\frac{1}{8}\\\frac{3}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}40\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{8}\times 40\\\frac{3}{8}\times 40\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\15\end{matrix}\right)
Do the arithmetic.
x=25,y=15
Extract the matrix elements x and y.
x+y=\frac{600}{15}
Consider the first equation. Divide both sides by 15.
x+y=40
Divide 600 by 15 to get 40.
3x-5y=0
Consider the second equation. Subtract 5y from both sides.
x+y=40,3x-5y=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3x+3y=3\times 40,3x-5y=0
To make x and 3x equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 1.
3x+3y=120,3x-5y=0
Simplify.
3x-3x+3y+5y=120
Subtract 3x-5y=0 from 3x+3y=120 by subtracting like terms on each side of the equal sign.
3y+5y=120
Add 3x to -3x. Terms 3x and -3x cancel out, leaving an equation with only one variable that can be solved.
8y=120
Add 3y to 5y.
y=15
Divide both sides by 8.
3x-5\times 15=0
Substitute 15 for y in 3x-5y=0. Because the resulting equation contains only one variable, you can solve for x directly.
3x-75=0
Multiply -5 times 15.
3x=75
Add 75 to both sides of the equation.
x=25
Divide both sides by 3.
x=25,y=15
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}