\left\{ \begin{array} { l } { 140 = 30 k + b } \\ { 100 = 50 k + b } \end{array} \right.
Solve for k, b
k=-2
b=200
Share
Copied to clipboard
30k+b=140
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
50k+b=100
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
30k+b=140,50k+b=100
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
30k+b=140
Choose one of the equations and solve it for k by isolating k on the left hand side of the equal sign.
30k=-b+140
Subtract b from both sides of the equation.
k=\frac{1}{30}\left(-b+140\right)
Divide both sides by 30.
k=-\frac{1}{30}b+\frac{14}{3}
Multiply \frac{1}{30} times -b+140.
50\left(-\frac{1}{30}b+\frac{14}{3}\right)+b=100
Substitute -\frac{b}{30}+\frac{14}{3} for k in the other equation, 50k+b=100.
-\frac{5}{3}b+\frac{700}{3}+b=100
Multiply 50 times -\frac{b}{30}+\frac{14}{3}.
-\frac{2}{3}b+\frac{700}{3}=100
Add -\frac{5b}{3} to b.
-\frac{2}{3}b=-\frac{400}{3}
Subtract \frac{700}{3} from both sides of the equation.
b=200
Divide both sides of the equation by -\frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
k=-\frac{1}{30}\times 200+\frac{14}{3}
Substitute 200 for b in k=-\frac{1}{30}b+\frac{14}{3}. Because the resulting equation contains only one variable, you can solve for k directly.
k=\frac{-20+14}{3}
Multiply -\frac{1}{30} times 200.
k=-2
Add \frac{14}{3} to -\frac{20}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
k=-2,b=200
The system is now solved.
30k+b=140
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
50k+b=100
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
30k+b=140,50k+b=100
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}30&1\\50&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}140\\100\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}30&1\\50&1\end{matrix}\right))\left(\begin{matrix}30&1\\50&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}30&1\\50&1\end{matrix}\right))\left(\begin{matrix}140\\100\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}30&1\\50&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}30&1\\50&1\end{matrix}\right))\left(\begin{matrix}140\\100\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}30&1\\50&1\end{matrix}\right))\left(\begin{matrix}140\\100\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{30-50}&-\frac{1}{30-50}\\-\frac{50}{30-50}&\frac{30}{30-50}\end{matrix}\right)\left(\begin{matrix}140\\100\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{20}&\frac{1}{20}\\\frac{5}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}140\\100\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{20}\times 140+\frac{1}{20}\times 100\\\frac{5}{2}\times 140-\frac{3}{2}\times 100\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-2\\200\end{matrix}\right)
Do the arithmetic.
k=-2,b=200
Extract the matrix elements k and b.
30k+b=140
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
50k+b=100
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
30k+b=140,50k+b=100
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
30k-50k+b-b=140-100
Subtract 50k+b=100 from 30k+b=140 by subtracting like terms on each side of the equal sign.
30k-50k=140-100
Add b to -b. Terms b and -b cancel out, leaving an equation with only one variable that can be solved.
-20k=140-100
Add 30k to -50k.
-20k=40
Add 140 to -100.
k=-2
Divide both sides by -20.
50\left(-2\right)+b=100
Substitute -2 for k in 50k+b=100. Because the resulting equation contains only one variable, you can solve for b directly.
-100+b=100
Multiply 50 times -2.
b=200
Add 100 to both sides of the equation.
k=-2,b=200
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}