\left\{ \begin{array} { l } { 139 x + 361 y = 861 } \\ { 361 x + 139 y = 639 } \end{array} \right.
Solve for x, y
x=1
y=2
Graph
Share
Copied to clipboard
139x+361y=861,361x+139y=639
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
139x+361y=861
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
139x=-361y+861
Subtract 361y from both sides of the equation.
x=\frac{1}{139}\left(-361y+861\right)
Divide both sides by 139.
x=-\frac{361}{139}y+\frac{861}{139}
Multiply \frac{1}{139} times -361y+861.
361\left(-\frac{361}{139}y+\frac{861}{139}\right)+139y=639
Substitute \frac{-361y+861}{139} for x in the other equation, 361x+139y=639.
-\frac{130321}{139}y+\frac{310821}{139}+139y=639
Multiply 361 times \frac{-361y+861}{139}.
-\frac{111000}{139}y+\frac{310821}{139}=639
Add -\frac{130321y}{139} to 139y.
-\frac{111000}{139}y=-\frac{222000}{139}
Subtract \frac{310821}{139} from both sides of the equation.
y=2
Divide both sides of the equation by -\frac{111000}{139}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{361}{139}\times 2+\frac{861}{139}
Substitute 2 for y in x=-\frac{361}{139}y+\frac{861}{139}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-722+861}{139}
Multiply -\frac{361}{139} times 2.
x=1
Add \frac{861}{139} to -\frac{722}{139} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=1,y=2
The system is now solved.
139x+361y=861,361x+139y=639
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}139&361\\361&139\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}861\\639\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}139&361\\361&139\end{matrix}\right))\left(\begin{matrix}139&361\\361&139\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}139&361\\361&139\end{matrix}\right))\left(\begin{matrix}861\\639\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}139&361\\361&139\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}139&361\\361&139\end{matrix}\right))\left(\begin{matrix}861\\639\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}139&361\\361&139\end{matrix}\right))\left(\begin{matrix}861\\639\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{139}{139\times 139-361\times 361}&-\frac{361}{139\times 139-361\times 361}\\-\frac{361}{139\times 139-361\times 361}&\frac{139}{139\times 139-361\times 361}\end{matrix}\right)\left(\begin{matrix}861\\639\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{139}{111000}&\frac{361}{111000}\\\frac{361}{111000}&-\frac{139}{111000}\end{matrix}\right)\left(\begin{matrix}861\\639\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{139}{111000}\times 861+\frac{361}{111000}\times 639\\\frac{361}{111000}\times 861-\frac{139}{111000}\times 639\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Do the arithmetic.
x=1,y=2
Extract the matrix elements x and y.
139x+361y=861,361x+139y=639
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
361\times 139x+361\times 361y=361\times 861,139\times 361x+139\times 139y=139\times 639
To make 139x and 361x equal, multiply all terms on each side of the first equation by 361 and all terms on each side of the second by 139.
50179x+130321y=310821,50179x+19321y=88821
Simplify.
50179x-50179x+130321y-19321y=310821-88821
Subtract 50179x+19321y=88821 from 50179x+130321y=310821 by subtracting like terms on each side of the equal sign.
130321y-19321y=310821-88821
Add 50179x to -50179x. Terms 50179x and -50179x cancel out, leaving an equation with only one variable that can be solved.
111000y=310821-88821
Add 130321y to -19321y.
111000y=222000
Add 310821 to -88821.
y=2
Divide both sides by 111000.
361x+139\times 2=639
Substitute 2 for y in 361x+139y=639. Because the resulting equation contains only one variable, you can solve for x directly.
361x+278=639
Multiply 139 times 2.
361x=361
Subtract 278 from both sides of the equation.
x=1
Divide both sides by 361.
x=1,y=2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}