\left\{ \begin{array} { l } { 13 x = y } \\ { 65 x + 2 y = 13 } \end{array} \right.
Solve for x, y
x=\frac{1}{7}\approx 0.142857143
y = \frac{13}{7} = 1\frac{6}{7} \approx 1.857142857
Graph
Share
Copied to clipboard
13x-y=0
Consider the first equation. Subtract y from both sides.
13x-y=0,65x+2y=13
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
13x-y=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
13x=y
Add y to both sides of the equation.
x=\frac{1}{13}y
Divide both sides by 13.
65\times \frac{1}{13}y+2y=13
Substitute \frac{y}{13} for x in the other equation, 65x+2y=13.
5y+2y=13
Multiply 65 times \frac{y}{13}.
7y=13
Add 5y to 2y.
y=\frac{13}{7}
Divide both sides by 7.
x=\frac{1}{13}\times \frac{13}{7}
Substitute \frac{13}{7} for y in x=\frac{1}{13}y. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{1}{7}
Multiply \frac{1}{13} times \frac{13}{7} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{1}{7},y=\frac{13}{7}
The system is now solved.
13x-y=0
Consider the first equation. Subtract y from both sides.
13x-y=0,65x+2y=13
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}13&-1\\65&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\13\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}13&-1\\65&2\end{matrix}\right))\left(\begin{matrix}13&-1\\65&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}13&-1\\65&2\end{matrix}\right))\left(\begin{matrix}0\\13\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}13&-1\\65&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}13&-1\\65&2\end{matrix}\right))\left(\begin{matrix}0\\13\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}13&-1\\65&2\end{matrix}\right))\left(\begin{matrix}0\\13\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13\times 2-\left(-65\right)}&-\frac{-1}{13\times 2-\left(-65\right)}\\-\frac{65}{13\times 2-\left(-65\right)}&\frac{13}{13\times 2-\left(-65\right)}\end{matrix}\right)\left(\begin{matrix}0\\13\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{91}&\frac{1}{91}\\-\frac{5}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}0\\13\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{91}\times 13\\\frac{1}{7}\times 13\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\\\frac{13}{7}\end{matrix}\right)
Do the arithmetic.
x=\frac{1}{7},y=\frac{13}{7}
Extract the matrix elements x and y.
13x-y=0
Consider the first equation. Subtract y from both sides.
13x-y=0,65x+2y=13
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
65\times 13x+65\left(-1\right)y=0,13\times 65x+13\times 2y=13\times 13
To make 13x and 65x equal, multiply all terms on each side of the first equation by 65 and all terms on each side of the second by 13.
845x-65y=0,845x+26y=169
Simplify.
845x-845x-65y-26y=-169
Subtract 845x+26y=169 from 845x-65y=0 by subtracting like terms on each side of the equal sign.
-65y-26y=-169
Add 845x to -845x. Terms 845x and -845x cancel out, leaving an equation with only one variable that can be solved.
-91y=-169
Add -65y to -26y.
y=\frac{13}{7}
Divide both sides by -91.
65x+2\times \frac{13}{7}=13
Substitute \frac{13}{7} for y in 65x+2y=13. Because the resulting equation contains only one variable, you can solve for x directly.
65x+\frac{26}{7}=13
Multiply 2 times \frac{13}{7}.
65x=\frac{65}{7}
Subtract \frac{26}{7} from both sides of the equation.
x=\frac{1}{7}
Divide both sides by 65.
x=\frac{1}{7},y=\frac{13}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}