\left\{ \begin{array} { l } { 124 + 20 x = 112 } \\ { 42 x + 20 y = 144 } \end{array} \right.
Solve for x, y
x=-\frac{3}{5}=-0.6
y = \frac{423}{50} = 8\frac{23}{50} = 8.46
Graph
Share
Copied to clipboard
20x=112-124
Consider the first equation. Subtract 124 from both sides.
20x=-12
Subtract 124 from 112 to get -12.
x=\frac{-12}{20}
Divide both sides by 20.
x=-\frac{3}{5}
Reduce the fraction \frac{-12}{20} to lowest terms by extracting and canceling out 4.
42\left(-\frac{3}{5}\right)+20y=144
Consider the second equation. Insert the known values of variables into the equation.
-\frac{126}{5}+20y=144
Multiply 42 and -\frac{3}{5} to get -\frac{126}{5}.
20y=144+\frac{126}{5}
Add \frac{126}{5} to both sides.
20y=\frac{846}{5}
Add 144 and \frac{126}{5} to get \frac{846}{5}.
y=\frac{\frac{846}{5}}{20}
Divide both sides by 20.
y=\frac{846}{5\times 20}
Express \frac{\frac{846}{5}}{20} as a single fraction.
y=\frac{846}{100}
Multiply 5 and 20 to get 100.
y=\frac{423}{50}
Reduce the fraction \frac{846}{100} to lowest terms by extracting and canceling out 2.
x=-\frac{3}{5} y=\frac{423}{50}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}