\left\{ \begin{array} { l } { 120 x + 80 y = 2800 } \\ { 48 x + 40 y = 1280 } \end{array} \right.
Solve for x, y
x=10
y=20
Graph
Share
Copied to clipboard
120x+80y=2800,48x+40y=1280
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
120x+80y=2800
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
120x=-80y+2800
Subtract 80y from both sides of the equation.
x=\frac{1}{120}\left(-80y+2800\right)
Divide both sides by 120.
x=-\frac{2}{3}y+\frac{70}{3}
Multiply \frac{1}{120} times -80y+2800.
48\left(-\frac{2}{3}y+\frac{70}{3}\right)+40y=1280
Substitute \frac{-2y+70}{3} for x in the other equation, 48x+40y=1280.
-32y+1120+40y=1280
Multiply 48 times \frac{-2y+70}{3}.
8y+1120=1280
Add -32y to 40y.
8y=160
Subtract 1120 from both sides of the equation.
y=20
Divide both sides by 8.
x=-\frac{2}{3}\times 20+\frac{70}{3}
Substitute 20 for y in x=-\frac{2}{3}y+\frac{70}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-40+70}{3}
Multiply -\frac{2}{3} times 20.
x=10
Add \frac{70}{3} to -\frac{40}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=10,y=20
The system is now solved.
120x+80y=2800,48x+40y=1280
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}120&80\\48&40\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2800\\1280\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}120&80\\48&40\end{matrix}\right))\left(\begin{matrix}120&80\\48&40\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}120&80\\48&40\end{matrix}\right))\left(\begin{matrix}2800\\1280\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}120&80\\48&40\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}120&80\\48&40\end{matrix}\right))\left(\begin{matrix}2800\\1280\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}120&80\\48&40\end{matrix}\right))\left(\begin{matrix}2800\\1280\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{40}{120\times 40-80\times 48}&-\frac{80}{120\times 40-80\times 48}\\-\frac{48}{120\times 40-80\times 48}&\frac{120}{120\times 40-80\times 48}\end{matrix}\right)\left(\begin{matrix}2800\\1280\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{24}&-\frac{1}{12}\\-\frac{1}{20}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}2800\\1280\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{24}\times 2800-\frac{1}{12}\times 1280\\-\frac{1}{20}\times 2800+\frac{1}{8}\times 1280\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\20\end{matrix}\right)
Do the arithmetic.
x=10,y=20
Extract the matrix elements x and y.
120x+80y=2800,48x+40y=1280
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
48\times 120x+48\times 80y=48\times 2800,120\times 48x+120\times 40y=120\times 1280
To make 120x and 48x equal, multiply all terms on each side of the first equation by 48 and all terms on each side of the second by 120.
5760x+3840y=134400,5760x+4800y=153600
Simplify.
5760x-5760x+3840y-4800y=134400-153600
Subtract 5760x+4800y=153600 from 5760x+3840y=134400 by subtracting like terms on each side of the equal sign.
3840y-4800y=134400-153600
Add 5760x to -5760x. Terms 5760x and -5760x cancel out, leaving an equation with only one variable that can be solved.
-960y=134400-153600
Add 3840y to -4800y.
-960y=-19200
Add 134400 to -153600.
y=20
Divide both sides by -960.
48x+40\times 20=1280
Substitute 20 for y in 48x+40y=1280. Because the resulting equation contains only one variable, you can solve for x directly.
48x+800=1280
Multiply 40 times 20.
48x=480
Subtract 800 from both sides of the equation.
x=10
Divide both sides by 48.
x=10,y=20
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}